Aquatic Biodiversity Documentation and Suggesting Measures for their Conservation in Rivers and Ponds of MP

Bhopal 462 026 Email: secvip@yahoo.co.in **MP State Biodiversity Board Bhopal**

TITLE OF THE PROJECT

Aquatic biodiversity documentation and suggesting measures for their conservation in Rivers and Ponds of M.P.

SPONSORED BY

M.P. State Biodiversity Board Bhopal (M.P.)

SUBMITTED TO

M.P. State Biodiversity Board Bhopal (M.P.)

26, Kisan Bhawan,1st floor, Arera hills Bhopal (M.P.)-462011

SUBMITTED BY

Dr. Vipin Vyas., Sr. Lecturer (Principal investigator)

Phone: 0755-2463062 (R) 91+9827273545 (M) Email: secvip@yahoo.co.in Mr. Vivek Parashar (JRF) Dr. Dinesh Damde (JRF) (Research fellows)

Department of Environmental Sciences and Limnology Barkatullah University, Hoshangabad road, Bhopal M.P-462026

Page No.

1.	Background and present status	1-2
2.	Information Gap	3
3.	Objective	3
4.	Study area	3-7
4.1	Description of different river basins of M.P.	8-10
	4.1.1. Betwa basin	
	4.1.2. Tapti basin	
	4.1.3. Chambal basin	
	4.1.4. Ken basin	
	4.1.5. Son basin	
4.2	Description of sampling sites in different river basins of M.P.	11-15
	4.2.1. Betwa basin	
	4.2.2. Tapti basin	
	4.2.3. Chambal basin	
	4.2.4. Ken basin	
	4.2.5. Son basin	
	4.2.6. Rajgarh district	
5. N	Aethodology	16-24
	5.1. Details of field survey techniques	
	5.2 Physico-chemical estimation	
	5.3 Fish collection, Preservation and Identification	
	5.4 Plankton collection and identification	
	5.5 Benthic collection and identification	
	5.6 Birds Identification	
6. P	ert chart	25
7. S	Survey of Pertinent literature	26-29
8. F	Fish biodiversity documentation	27-86
8.1	Freshwater fish biodiversity of India	
	8.1.1. Fish biodiversity of Betwa basin and their composition	
	8.1.2. Fish relative abundance of fishes in Betwa basin	
	8.1.3. Fish biodiversity of Chambal basin and their composition	

8.1.4. Fish relative abundance of fishes in Chambal basin	
8.1.5. Fish biodiversity of Tapti basin and their composition	
8.1.6. Fish relative abundance of fishes in Tapti basin	
8.1.7. Fish biodiversity of Ken basin and their composition	
8.1.8. Fish relative abundance of fishes in Ken basin	
8.1.9. Fish biodiversity of Son basin and their composition	
8.1.10. Fish relative abundance of fishes in Son basin	
8.1.11. Fish biodiversity of Rajgarh District their composition	
8.1.12. Fish relative abundance of fishes in Rajgarh District	
8.2. Conservation status of fishes	87-109
8.2.1. Basin wise conservation status of fishes	
8.2.1.1. Betwa basin	
8.2.1.2. Chambal basin	
8.2.1.3. Tapti basin	
8.2.1.4. Ken basin	
8.2.1.5. Son basin	
8.2.1.6. Rajgarh district	
9. Plankton diversity	110-156
9.1. Phytoplankton	
9.1.1. Phytoplankton diversity in Betwa basin	
9.1.2. Phytoplankton diversity in Chambal basin	
9.1.3. Phytoplankton diversity in Tapti basin	
9.1.4. Phytoplankton diversity in Ken basin	
9.1.5. Phytoplankton diversity in Son basin	
9.1.6. Phytoplankton diversity in Rajgarh District basin	
9.2. Zooplankton	
9.2.1. Zooplankton diversity in Chambal Basin	
9.2.2. Zooplankton diversity in Betwa Basin	
9.2.3. Zooplankton diversity in Tapti Basin	
9.2.4. Zooplankton diversity in Ken Basin	
9.2.5. Zooplankton diversity in Son Basin	
9.2.6. Zooplankton diversity in Rajgarh District Basin	
10. Benthic community	157-177
10.1. Benthic diversity in Chambal Basin	
10.2. Benthic diversity in Betwa Basin	
10.3. Benthic diversity in Tapti Basin	

10.4. Benthic diversity in Ken Basin

10.5. Benthic diversity in Son Basin	
10.6. Benthic diversity in Rajgarh District Basin	
11. Macrophytes (Aquatic Plants)	177-189
11.2. Macrophytes diversity in Chambal Basin	
11.2. Macrophytes diversity in Betwa Basin	
11.3. Macrophytes diversity in Tapti Basin	
11.4. Macrophytes diversity in Ken Basin	
11.5. Macrophytes diversity in Son Basin	
11.6. Macrophytes diversity in Rajgarh District Basin	
12. Birds diversity in different river basin of M.P.	189-193
12.1 Betwa basin	
12.2. Tapti basin	
12.3. Chambal basin	
12.4. Ken basin	
12.5. Son basin	
12.6. Rajgarh District	
13. Physico-chemical properties	194-205
14. Resource mapping on GIS platform	206
15. Socio-economic status	206-212
16. Developing digital database of fish biodiversity	
16.1. Window showing the data base	
17. Action plan of Aquatic Biodiversity conservation	214-222

List of tables

Table.1. Ecoregion of Madhya Pradesh Table.2. River and Tributaries of M.P. along with reservoir and district wise Table.3. Sampling sites selection Criteria Table.4. Fish diversity of Betwa basin in summer season Table.5. Fish diversity of Betwa basin in Pre-monsoon season Table.6. Fish diversity of Betwa basin in Post-monsoon season Table.7. Fish diversity of Betwa basin in winter season Table.8. Overall Fish diversity of Betwa basin during the study Table.9. Fish abundance of Betwa basin in Pre-monsoon season Table.10. Fish abundance of Betwa basin in Pre-monsoon season Table.11. Fish relative abundance of Betwa basin in Post-monsoon season Table.12. Fish relative abundance of Betwa basin in winter season Table.13. Overall Fish relative abundance of Betwa basin in winter season Table.14. Fish diversity of Tapti and other basin in summer season

- Table.15. Fish diversity of Tapti and other basin in Pre-monsoon season
- Table.16. Fish diversity of Tapti and other basin in Post-monsoon season
- Table.17. Fish diversity of Tapti and other basin in winter season
- Table.18. Overall Fish diversity of Tapti and other basin during the study
- Table.19. Fish relative abundance of Tapti and other basin in summer season
- Table.20. Fish relative abundance of Tapti and other basin in Pre-monsoon season
- Table.21. Fish relative abundance of Tapti and other basin in Post-monsoon season
- Table.22. Fish relative abundance of Tapti and other basin in winter season
- Table.23. Overall Fish relative abundance of Tapti and other basin during the study
- Table.24. Fish conservation status in Betwa basin
- Table.25. Fish conservation status in Chambal basin
- Table.26. Fish conservation status in Tapti basin
- Table.27. Fish conservation status in Ken basin
- Table.28. Fish conservation status in Son basin
- Table.29. Fish conservation status in Rajgarh basin
- Table.30. Overall Fish conservation status during the study
- Table.31. Overall Phytoplankton diversity in different river basin of M.P.
- Table.32. Seasonal Phytoplankton diversity in Chambal basin of M.P.
- Table.33. Seasonal Phytoplankton diversity in Betwa basin of M.P.
- Table.34. Seasonal Phytoplankton diversity in Tapti basin of M.P.
- Table.35. Seasonal Phytoplankton diversity in Ken basin of M.P.
- Table.36. Seasonal Phytoplankton diversity in Son basin of M.P.
- Table.37. Seasonal Phytoplankton diversity in Rajgarh distt. of M.P.
- Table.38. Zooplankton diversity in different river basin of M.P.
- Table.39. Seasonal Zooplankton diversity in Chambal basin of M.P.
- Table.40. Seasonal Zooplankton diversity in Betwa basin of M.P.
- Table.41. Seasonal Zooplankton diversity in Tapti basin of M.P.
- Table.42. Seasonal Zooplankton diversity in Ken basin of M.P.
- Table.43. Seasonal Zooplankton diversity in Son basin of M.P.
- Table.44. Seasonal Zooplankton diversity in Rajgarh disst. of M.P.
- Table.45. Overall Benthic diversity in different river basin of M.P.
- Table.46. Seasonal Benthic diversity in Chambal basin of M.P.
- Table.47. Seasonal Benthic diversity in Betwa basin of M.P.
- Table.48. Seasonal Benthic diversity in Tapti basin of M.P.
- Table.49. Seasonal Benthic diversity in Ken basin of M.P.
- Table.50. Seasonal Benthic diversity in Son basin of M.P.

- Table.51. Seasonal Benthic diversity in Rajgarh distt. of M.P.
- Table.52. Macrophytes diversity in different river basin of Madhya Pradesh
- Table.53. Macrophytes diversity in different river basin of M.P.
- Table.54. Seasonal Macrophytes diversity in Chambal basin of M.P.
- Table.55. Seasonal Macrophytes diversity in Betwa basin of M.P.
- Table.56. Seasonal Macrophytes diversity in Tapti basin of M.P.
- Table.57. Seasonal Macrophytes diversity in Ken basin of M.P.
- Table.58. Seasonal Macrophytes diversity in Son basin of M.P.
- Table.59. Seasonal Macrophytes diversity in Rajgarh disst. of M.P.
- Table.60. Birds diversity in different river basin of M.P.
- Table.61. Physico-Chemical variation of Tapti Basin and Chambal Basin during the April-May 2007
- Table.62. Physico-Chemical variation of Betwa Basin during the April-May 2007
- Table.63. Physico-Chemical variation of Betwa Basin during the Nov- Dec 2007
- Table.64. Physico-Chemical variation of Chambal Basin during the Nov- Dec 2007
- Table.65. Physico-Chemical variation of Tapti Basin during the Nov- Dec 2007
- Table.66. Physico-Chemical variation of Ken and Son Basin during the Nov- Dec 2007
- Table.67. Physico-Chemical variation of Ponds and Rivers of Rajgarh during the Nov- Dec 2007
- Table.68. Physico-Chemical variation of Betwa Basin during the Sep- Oct. 2008
- Table.69. Physico-Chemical variation of Chambal Basin during the Sep- Oct. 2008
- Table.70. Physico-Chemical variation of Tapti Basin during the Sep- Oct. 2008
- Table.71. Physico-Chemical variation of Ken and Son Basin during the Sep- Oct. 2008
- Table.72. Physico-Chemical variation of Ponds and Rivers of Rajgarh during the Sep- Oct. 2008
- Table.73. Settlement of fishing villages under the river Basins
- Table.74. Population of fishing villages during the socioeconomic survey
- Table.75. Commercial status of fishes in different river basin of M.P.

List of figures

- Figure 1. Fish diversity in Betwa basin of M.P.
- Figure 2. Family wise species composition of Betwa basin of M.P.
- Figure 3. Fish abundance in Betwa basin of M.P.
- Figure 4. Family wise fish abundance in Betwa basin of M.P.
- Figure 5. Fish diversity in Chambal basin of M.P.
- Figure 6. Family wise species composition in Chambal basin of M.P.
- Figure 7. Fish abundance in Chambal basin of M.P.
- Figure 8. Family wise fish abundance in Chambal basin of M.P.
- Figure 9. Fish diversity in Tapti and other basin of M.P.
- Figure 10. Family wise species composition in Tapti and other basin of M.P.
- Figure 11. Fish abundance in Tapti and other basin of M.P.

Figure 12. Family wise fish abundance in Tapti and other basin of M.P.

- Figure 13. Fish species conservation status according to CAFF (2006) in Betwa basin
- Figure 14. Fish species conservation status according to CAFF (2006) in Chambal basin
- Figure 15. Fish species conservation status according to CAFF (2006) in Tapti basin
- Figure 16. Fish species conservation status according to CAFF (2006) in Ken basin
- Figure 17. Fish species conservation status according to CAFF (2006) in Son basin
- Figure 18. Fish species conservation status according to CAFF (2006) in Rajgarh basin
- Figure 19. Overall Fish species conservation status according to CAFF (2006) during the study
- Figure 20. Phytoplankton diversity in different river basin of M.P.
- Figure 21. Group wise Phytoplankton species composition in basin of M.P.
- Figure 22. Seasonal Phytoplankton diversity in Chambal basin of M.P.
- Figure 23. Group wise Phytoplankton species composition in Chambal basin of M.P.
- Figure 24. Seasonal Phytoplankton diversity in Betwa basin of M.P.
- Figure 25. Group wise Phytoplankton species composition in Betwa basin of M.P.
- Figure 26. Seasonal Phytoplankton diversity in Tapti basin of M.P.
- Figure 27. Group wise Phytoplankton species composition in Tapti basin of M.P.
- Figure 28. Seasonal Phytoplankton diversity in Ken basin of M.P.
- Figure 29. Group wise Phytoplankton species composition in Ken basin of M.P.
- Figure 30. Seasonal Phytoplankton diversity in Son basin of M.P.
- Figure 31. Group wise Phytoplankton species composition in Son basin of M.P.
- Figure 32. Seasonal Phytoplankton diversity in Rajgarh Distt. of M.P.
- Figure 33. Group wise Phytoplankton species composition in Rajgarh basin of M.P.
- Figure 34. Zooplankton diversity in different river basin of M.P.
- Figure 35. Group wise Zooplankton species composition in basin of M.P.
- Figure 36. Seasonal Phytoplankton diversity in Chambal basin of M.P.
- Figure 37. Group wise Zooplankton species composition in Chambal basin of M.P.
- Figure 38. Seasonal Zooplankton diversity in Betwa basin of M.P.
- Figure 39. Group wise Zooplankton species composition in Betwa basin of M.P.
- Figure 40. Seasonal Zooplankton diversity in Tapti basin of M.P.
- Figure 41. Group wise Zooplankton species composition in Tapti basin of M.P.
- Figure 42. Seasonal Zooplankton diversity in Ken basin of M.P.
- Figure 43. Group wise Zooplankton species composition in Ken basin of M.P.
- Figure 44. Seasonal Zooplankton diversity in Son basin of M.P.
- Figure 45. Group wise Zooplankton species composition in Son basin of M.P.
- Figure 46. Seasonal Zooplankton diversity in Rajgarh Distt. of M.P.
- Figure 47. Group wise Zooplankton species composition in Rajgarh Distt. of M.P.
- Figure 48. Benthic diversity in different river basin of M.P.

- Figure 49. Group wise Benthic species composition in basin of M.P.
- Figure 50. Seasonal Benthic diversity in Chambal basin of M.P.
- Figure 51. Group wise Benthic species composition in Chambal basin of M.P.
- Figure 52. Seasonal Benthic diversity in Betwa basin of M.P.
- Figure 53. Group wise Benthic species composition in Betwa basin of M.P.
- Figure 54. Seasonal Benthic diversity in Tapti basin of M.P.
- Figure 55. Group wise Benthic species composition in Tapti basin of M.P.
- Figure 56. Seasonal Benthic diversity in Ken basin of M.P.
- Figure 57. Group wise Benthic species composition in Ken basin of M.P.
- Figure 58. Seasonal Benthic diversity in Son basin of M.P.
- Figure 59. Group wise Benthic species composition in Son basin of M.P.
- Figure 60. Seasonal Benthic diversity in Rajgarh Distt. of M.P.
- Figure 61. Group wise Benthic species composition in Rajgarh distt. of M.P.
- Figure 62. Macrophytes diversity in different river basin of M.P.
- Figure 63. Seasonal Macrophytes diversity in Chambal basin of M.P.
- Figure 64. Seasonal Macrophytes diversity in Betwa basin of M.P.
- Figure 65. Seasonal Macrophytes diversity in Tapti basin of M.P.
- Figure 66. Seasonal Macrophytes diversity in Ken basin of M.P.
- Figure 67. Seasonal Macrophytes diversity in Son basin of M.P.
- Figure 68. Seasonal Macrophytes diversity in Rajgarh Distt. of M.P.
- Figure 69. Macrophytes species composition in different river basin of M.P.+
- Figure 70. Birds diversity in different river basin of M.P.
- Figure 71. Family wise Birds species composition in different river basin of M.P.
- Figure 72. Yearly income percentage by fishing in different river basin of M.P.
- Figure 73. Commercial status of fishes in different river basin of M.P

List of photographs

- Photographs Showing: Different Activities during the study
- Photographs Showing: Sampling sites of Betwa basin
- Photographs Showing: Sampling sites of Chambal basin
- Photographs Showing: Sampling sites of Tapti basin
- Photographs Showing: Sampling sites of Ken and Son basin
- Photographs Showing: Sampling sites of Rajgarh

List of maps

Different River Basins of Madhya Pradesh Satellite Imagery of Madhya Pradesh Showing its River Basins Base Map of Madhya Pradesh: Its River Basins

1. Background and present status

As identified by **Convention on Biological Diversity** (Anon 2003), data and information is needed on the following issues at global as well as local level to protect Freshwater Biodiversity.

- Habitat Inventory and Indicators of Condition and Change
- Species Information
- Water Resource Information
- Socio-Economic data

According to the report of CBD entitled "Status and Trends of Biodiversity of Inland Water Ecosystems" (Technical Series no. 11) in absence of this information and data, proper planning of freshwater biodiversity conservation can not be done.

In the backdrop of this gap in information, it essential to assess the situation of aquatic biodiversity in Madhya Pradesh region Madhya Pradesh is rich in aquatic resources. Entire state drain in to four major river system of India, mainly Ganga, Narmada, Tapti and Godawari. Major portion of the state fall under Ganga River system and Chambal, Parvati, Kalisindh Betwa, Ken and Dhasan are main rivers of the region. Narmada and Tapti are two west flowing river system and

southern part of the state drains in to Godawari system through Pench and Wainganga rivers.

These aquatic resources give support to a rich aquatic biodiversity. Unfortunately systematic study of aquatic biodiversity has been neglected in the state for decades and the information on these aspects are either very old or not available in the most of the cases.

Studies of fish biodiversity dates back to 1941 when Hora and Nair first reported forty one species of fishes in hill stream of Satpura ranges, which are part of the Narmada river system. First detailed survey of the river was conducted by CICFRI, Barackpore between 1958-66 and recorded 77 species of fishes. Fisheries department of MP conducted another survey in 1967-71 and 46 fish species were recorded. Almost after two decades another survey was conducted in the Western Zone of the river by Rao (1991) and recorded 84 species. Recently Vyas (2006) has reported 47 species of fishes in the 22 km stretch of the central Narmada Covering 9 protected area under a study commissioned by MP State Biodiversity Board.

Tapti river is west flowing river originates from Southern M.P. and enters Maharashtra. Fish faunal survey of this river was first conducted by Karamchandani and Pisolkar (1967) and reported 52 species in Tapti. Under All India Coordinated Project a survey was conducted in 1977 and 27 species were recorded from this river. Nimbalkar (1974, Unpublished data) recorded 20 species in the river after construction of Ukai Dam in Maharashtra.

Chambal river, which also has its origin in Madhya Pradesh, was first surveyed by Dubey and Mehra (1959) before construction of Gandhi Sagar dam and recorded 71 species of fishes from this stretch of the river. In 1977 Dubey and Chatterjee again surveyed the important river and recoded 41 species of fishes. Kartha and Rao (1992) also recoded 41 species of fishes in Ganghi Sagar reservoir.

Betwa is also major river of MP drains in to Ganga basin. Pertinent literature indicates that 55 species were recorded from Betwa River by Adholia (1977). No other record on this river is available till date after this study. However fish biodiversity of impoundments in Betwa basin has been subject to interesting studies. Halali reservoir in Vidisha District harbours plenty of *Notopterus chitala* in commercial catch, which has been declared critically endangered fish in other rivers of the state. The reservoir catch is also dominated by cat fishes mainly *Mystus* sp. Similarly the fishery of Upper Lake also depended on cat fish as they dominated commercial catch. Ratapani reservoir, which is now a part of Ratapani wildlife Sanctuary, has been a productive reservoir and Mahseer population has been main feature of this reservoir

Southern and southeastern part of the state consisting partly Betul Chhindwada Seoni and Balaghat districts form northern watershed of Godawari river system. Pench and Wainganga area main river of this region. Totladoh reservoir constructed of Pench river was once known for its Mahseer fishery apart from its commercial fisheries. After notification of Pench Tiger reserve fishing has been prohibited in this reservoir. It can be assumed that this reservoir may have well protected gene pool but this aspect has not been studied till now. Wainganga river in the region is known for its fresh water prawn population. *Macrobrachhium sp.* Overexploitation of Prawn and disruption of breeding cycle has resulted in reduced population of this commercially important fresh water arthropod.

2. Information Gaps

On the basis of above observations it can be concluded that

- Information of aquatic biodiversity is very old and not been updated for decade
- Information is scattered in reports, research papers and thesis
- Related socio-economic and other secondary information is lacking can not be collated on a single platform to draw up any conservation action plan.

3. Objective

It is therefore proposed to conducted a study with the following objectives

- To document current biodiversity profile in the water bodies of MP.
- To collect available records of fish biodiversity with current biodiversity profile.
- To assess the role of fishery resources in livelihood.
- To address the factors adversely affecting aquatic biodiversity including threats to dolphins and crocodile by fishing nets and to give necessary recommendations to mitigate this threat.
- To integrate all the information as geospatial scale using GIS.
- To prepare a management plan for conservation of endangered species.

4. Study area

Madhya Pradesh has been divided in to 6 ecoregions from biodiversity point of view. **Malwa Ecoregion** covers western part of M.P. Major Waterbodies of Malwa ecoregion are

- Chambal River
- Kshipra River
- Mahi River
- Kalisindh River

This ecoregion also harbour several reservoirs. **Gandhisagar** is the largest reservoir in this region and its fisheries is a major sources livelihood for number of fisherman families. **Gambhir and Undasa** in Ujjain district are important reservoir from irrigation water supply and fisheries aspects. Seasonal reservoir of Rajgarh districts are also rich

sources of fish fauna for livelihood of fisherman families. **Kalisindh** river is small tributary of **Chamba**l River and dry-up in summer months. Fish fauna gets refuge in pools found in mid river courses.

For the present study we identified **Chambal** river as major river from Malwa ecoregion as it represent almost all rivers of this region and a series of reservoir is present in this river in MP and Rajasthan having direct impart on its biodiversity

Seasonal reservoir of Rajgarh districts will also be taken during the study

Chambal ecoregion will also be represented by Chambal river. Kalisindh, Parvati and Kunwari are also important rivers in this area. As far as reservoirs are concerned Matatila, Harsi, Tigara, Motijheel and Pagara are main reservoirs. For the present study we have identified Chambal river and Pagara reservoir. This reservoir is reported to have abundance of catfish population.

In Central Ecoregion, Betwa and Parvati are main rivers, Kaliasot Patra and Halali area small rivers, which join Betwa river in Vidisha District. Upper lake of Bhopal Ratapani, Halali and Kerwa area important reservoir in this area. We have identified Betwa river because it's proposed to link it Ken River and Upper Lake of Bhopal for dominance of cat fishes in commercial catch. Attempts will be made to study Halali reservoir, which support *Notopterus chitala* which is declared critically endangered.

In **Satpura Ecoregion Pench** and **Wainganga** area main rivers which drain in to Godawari basin. Some parts of this ecoregion drain in to Narmada through its tributaries like Sher Shaker etc. Narmada river is not being covered under this study we have taken **Wainganga** river for its precious Prawn population. Apart from this **Totladoh** reservoir will also be taken up on account of its notification in Tiger reserve area and commercial fishing prohibited on this reservoir.

Tapti River is another important river in Satpura Ecoregion. These rivers originate from Betul district and flow western through Burhanpur district before entering Maharashtra. This river will also be studied in this project.

Bundhelkahnd Ecoregion Ken and **Dhasan** area two important rivers forming a part of Indo-Gangetic system. **Ken** river is a very important river as it has good population of Mahseer fish. Ken Ghariyal Sanctuary has also been established here which also has significant contribution in conservation of aquatic biodiversity. We have identified **Ken** River for detailed study in this region

In **Vindhyan Ecoregion Govindgarh** lake has been identified from the present study biodiversity of some river and **Bansagar** will also be studied during the project.

Ecoregion	District	River/reservoir			
Malwa	Mandsour,Ratlam,Nemach,	Chambal and seasonal			
	Ujjain,Dhar,Indore,Dewas,	reservoir of Rajgarh			
	Shajapur,Jhabua and Rajgarh				
Chambal	Morena, Gwalior, Datia, Shivpuri,	Chambal			
	Guna, Bhind, Seopur.				
Bundhelkahnd	Ticumgarh, Chattarpur, Panna.	Ken river			
Vindhyan	Satna, Rewa, Sidhi, Shadol,	Son,Govindgarh lake			
Satpura	Hoshangabad,Betul,Khandwa,Khargone,	Tapti, Wainganga and			
	Chhindwada,Narsinghpur,Jabalpur,	Pench Rivers			
	Mandla,SEoni,Balaghat,Barwani,				
	Dindori,Harda, Katni				
Central	Bhopal,Sehore,Raisen,Sagar,Damoh,Vidisha	Betwa river, Upper lake,			
		Halali Reservoir			

 Table 1. Ecoregion of Madhya Pradesh

Table 2. River and Tributaries of M.P	along with reservoir and district wise
---------------------------------------	--

River	District root	Tributaries	District root
	Indore – Dhar– Ujjain-	Shipra	Indore – Dewas – Ujjain -
	Ratlam-Mandsore-		Ratlam - Chambal R.
	Nimach– Seopur–	Choti Kalisindh	Dewas – Ujjain - Chambal R
Chambal Murana - Bhind–U.P.		Gambhir	Dewas – Ujjain - Chambal R
		(Reservoir on Gambhir	
		R. – Yaswant sagar	
	(Reservoir on	and Gambhir Dam)	
	Chambal RGandhi		
	Sagar)	Kalisindh	Dewas – Shajapur – Rajgarh –
			Rajasthan - Chambal R
		Parwan	Rajgarh – Rajasthan - Chambal
			R
		Newaj	Sehore - Shajapur – Rajgarh –
			Rajasthan - Chambal R
		Parwati	Sehore-Bhopal-Rajgarh-Guna-
			Rajsthan- Chambal R

			-
		Ship	Sheopur-Chambal R
		Param	Sheopur-Chambal R
		Kanu	Guna-Shivpuri- Rajsthan-
			Shivpuri- Sheopur- Chambal R.
Ken	Panna – Chattarpur–	Sonar	Sagar-Dhamoh-Panna- Ken R.
	U.P.	Urmal	Chhatarpur- Ken R.
		Kutni	Chhatarpur- Ken R.
	(Reservoir on Ken R-	Shyamri	Chhatarpur- Ken R.
	Bariyarpur Dam)	Mirhasan	Panna- Ken R.
Sone	Shadol–Sidhi-U.P.	Banas	Shahdol-Sone R.
		Johil	Shahdol-Sone R.
		Mahanadi	Jabalpur- Sone R.
	(Reservoir on Sone R-	Tipan	Shahdol-Sone R.
	Ban sagar)	Keani	Shahdol-Sone R.
		Kanak	Shahdol-Sone R.
		Gopat	Shidhi- Sone R.
Narmada	Dindori –Mandla–	Silgi	Mandla -Narmada R.
	Jabalpur–	Burhaner	Mandla -Narmada R.
	Narsinghpur–	Banjer	Balaghat-Mandla -Narmada R.
	Hoshangabad–Sehore-	Temar	Sivni-Jabalpur- Narmada R.
	Harda–Dewas–	Gaur	Mandla – Jabalpur-Narmada R.
	khandwa – Khargone–	Hiran	Jabalpur- Narmada R.
	Dhar– Barwani–	Sher	Sivni- Narsinghpur- Narmada
	Jhabua- Gujrat		R.
		Shakkar	Chhindwada- Narsinghpur-
			Narmada R
		Dudhi	Chhindwada- Hoshangabad-
			Narmada R
		Tendoni	Raisen- Narmada R
		Tawa	Betul- Hoshangabad- Narmada
	(Reservoir on		R
	Narmada K Bargi,	(Reservoir on Tawa	
	Indira sagar,	RTawa reservoir)	
	Sandan canivan)	Barna	Raisen- Narmada R
	Salual Salival)		
		(Reservoir on Barna	
		RBarna reservoir)	
		Kolar	Sehore- Narmada R
		(Reservoir on Kolar	
		KKolar reservoir)	
		Chandrashawar	Dewas- Narmada K
		Chhota tawa	Burhanpur-Khandawa-Narmada
		17	K
Kanar II		Indore-Dewas -Narmada R	

		Kunda	Khargona Dhar Narmada P
		Moi	Khargone - Narmada R
		Hatni	Ihabua- Narmada R
		Kharner	Dhindhori Narmada P
		Hother	Hoshangahad Narmada P
		Ganial	Harda Narmada P
		Ainel	Harda Narmada R
		Ajilal Maabak	Harda Khandwa Narmada P
		Viacilak	Khandawa Narmada P
		Khorkio	Khargona Narmada P
		KliaiKla	Indore Normada D
		Nnari Dah	Indore- Narmada K.
		Deb	Barwani- Narmada K.
		Man	Dhar-Narmada R.
		Goi	Barwani- Narmada R.
		Uri	Dhar- Narmada R.
Tapti	Betul – Burhanpur –	Purna	Betul- Tapti R.
	Maharashtra	Mona	Burhanpur - Tapti R.
		Aner	Khargone-Maharashtra-Tapti
	(Reservoir on Tapti		R.
	R Chhanora Dam)	Gonai	Khargone-Maharashtra-Tapti
			R.
Betwa	Raisen – Vidisha –	Godar	Raisen- Betwa R.
	Sagar - Guna –	Kaliyasot	Bhopal-Raisen- Betwa R
	Shivpuri – U.P.		
		(Reservoir on	
		Kaliyasot R	
		Kaliyasot reservoir)	
		Ajnar	Bhopal-Raisen- Betwa R
		Halali	Bhopal-Vidisha- Betwa R
		(Reservoir on Halali	
		RHalali reservoir)	
		Base	Vidisha- Betwa R
		Bina	Raisen-Sagar-Vidisha- Betwa R
		Baha	Vidisha- Betwa R
		Sagar	Vidisha- Betwa R
		Naren	Vidisha- Betwa R
		Parasari	Vidisha- Betwa R
		Newan	Vidisha- Betwa R
		Kethan	Guna- Betwa R
		Ore	Guna- Betwa R

4.1.1. Betwa River Basin

The Betwa or Vetrawati is a river of great antiquity and immense mythological and religious values for the people of the Malwa region of Madhya Pradesh for hundreds of years. This third largest river of the Malwa region is not only important from the geo ecological point of view but also has a significantly potent socio- economic impact on the area through which it flows. Viewing from another angle, Betwa is an, Betwa is an important tributary of the Yamuna which in turn is a tributary of the river Ganga. This the Betwa as an important river of sacred gangetic river system. The River makes Betwa rises from the main Vindhyan range in the extreme south west of the Raisen district at Jhirri village. It flows for an estimated total length of 573 kms of which 216 kms in Madhya Pradesh and 98 kms. in Uttar Pradesh & finally joins the river Yamuna at Hamirpur in Uttar Pradesh. The river has a huge catchments area of around 46580 sq.k.m. During the course of its flow Betwa receives 14 tributaries of which as many as 11 are located in the Madhya Pradesh. After a course of 96 kms. From Jhirri it enters Vidisha district and flows in it for a course of about 112 kms. The important tributaries of the Betwa include Kaliasot, Godal, Baha, Newon, Parasari, Sagar, Naren, Kaithan, Bina, Jamni and Ore river. Among these, Baha, Newon, Kaithan and Bina flows in the Vidisha district.

4.1.2. Tapti River Basin

The Tapti River originates in the Betul district from place called Multai of Madhya Pradesh at an elevation of about 760 m. above mean sea level and at latitude 21⁰ 04' and longitude 78⁰ 21'. The river flows for 188 Kms in Betul district of Madhya Pradesh and runs along the common border of Madhya Pradesh and Maharashtra for a length of 58 Kms. At 246 Kms from the source the Tapti River leaves, the border of Maharashtra and Madhya Pradesh, and enters Khandwa district of M.P. and flowing 86 kms, re-enters Maharashtra. The length of Tapti River from its source to sea is about 724 Kms. Out of which it flows through Madhya Pradesh for a length of about 332 kms. & 217 Kms. in

Maharashtra and for about 175 Kms. in Gujarat before joining the Arabian Sea near Surat.

The River Tapti is an inter-state river flowing through Madhya Pradesh, Maharashtra and Gujarat. The total length of the river is 724 Kilometers with drainage area of 64874 Sq. Kms. Out of this 9804 Sq. Kms. Lie in Madhya Pradesh and 51100 Sq. Kms. lie in Maharashtra and 3970 Sq.K.m. in Gujarat. The main tributaries of Tapti River are Mona, Purna, Aner and Gomai in Madhya Pradesh.

4.1.3. Chambal Basin

River Chambal, a principal tributary of river Yamuna, originates in the Vindhyan ranges near Mhow in Indore District of Madhya Pradesh, at an elevation of 354 m, at latitude 22°27' and longitude 73°20'. The river flows through the states of Madhya Pradesh, Rajasthan and Uttar Pradesh.

The basin is roughly rectangular in shape, with a maximum length of 560 km in a northeast- southwest direction. The river flows for some 320 km in a generally northerly direction before entering a deep gorge in Rajasthan at Chourasigarh, about 96 km upstream of Kota. The deep gorge extends up to Kota and the river then flows for about 226 km in Rajasthan in a north-easterly direction, and then forms the boundary between MP and Rajasthan for about 252 km. Thereafter, the river forms the boundary between MP and UP for about 117 km, enters UP near Charak Nagar village and flows for about 40 km before joining river Yamuna. The main tributaries of river Chambal are Siwana, Chambal are Siwana, Retam, Shipra and Choti Kalisindh in MP, Kalisindh, Parwati, Parwan and Banas in Rajasthan.

4.1.4. Ken Basin

The Ken River has its origin from the Ahirgawan village on the north-west slopes of the Kaimur hills in the Jabalpur district of Madhya Pradesh at an elevation of about 550 meters above mean sea level. The Ken is an interstate river between Uttar Pradesh and Madhya Pradesh. The total length of the river from its origin to confluence with the river Yamuna is 427 km, out of which 292 km lies in Madhya Pradesh, 84 km in Uttar Pradesh and 51 km forms the common boundary between Uttar Pradesh and Madhya Pradesh. The river joins the Yamuna river near village Chilla in Uttar Pradesh at an elevation of about 95 m. The river is the last tributary of Yamuna before the Yamuna joins the Ganga.

The river basin lies between the latitudes of 23⁰12' N and 25⁰54' N and the longitudes of 78⁰30' E and 80⁰36' E. The total catchment area of the basin is 28058 sqkm, out of which 24472 sqkm lies in Madhya Pradesh and the remaining 3586 sqkm in Uttar Pradesh. The basin covers the areas of Jabalpur, Sagar, Damoh, Panna, Satna, Chhatarpur and Raisen districts of Madhya Pradesh and Hamirpur and Banda districts of Uttar Pradesh. It is bounded by Vindhyan range in the south, Betwa basin on west, free catchment of Yamuna below Ken on east, the river Yamuna on north. The important tributaries of Ken are Alona, Bearma, Sonar, Mirhasan, Shyamari, Banne, Kutri, Urmil, Kail and Chandrawal. Out of these, Alona, Bearma, Sonar, Mirhasan and Shyamari join Ken river upstream of the project site. River Banne, on which the Rangawan dam is constructed, joins river Ken between proposed Daudhan dam site and the existing Bariarpur P.U.W., while Kutri, Urmil, Kail and Chandrawal join downstream of Bariarpur P.U.W. Urmil and Kail rivers have part of their catchments in Uttar Pradesh, while river Chandrawal has maximum catchment area in Uttar Pradesh.

4.1.5. Son Basin

Sone River, the main southern tributary of the Ganges is a river of central India. It originates from the Amarkantak hills of Madhya Pradesh at an elevation of about 1127 m. above mean sea level at latitude 22^0 42' & longitude 81^0 59' and flows north-west through hills and reaches the Kaimur range, which forms the southern wall of the Gangetic plain (the flood-plain of the Ganges), the river turns east and continues its flow in that direction until it meets with the Ganges near Patna. The Son River at 784 kilometres (487 miles) long, is one of the largest rivers of India. Its chief tributaries in Madhya Pradesh are Juhil, Mahanadi and Banas.

A major reservoir Bansagar has been contructed in the river.Bansagar is a multipurpose river valley project on Son River situated in Ganga Basin in Madhya Pradesh, India envisaging both irrigation and hydroelectric power generation. The Bansagar Dam across Sone River is being constructed at village Deolond in Shahdol district on Rewa – Shahdol road, at a distance of 51.4 km from Rewa. Bansagar Dam is located at Latitude 24⁰ 11' 30'' N and Longitude 81⁰ 17' 15'' E.

4.2. Description of sampling sites in different river basin of Madhya Pradesh

4.2.1. Betwa basin

1. Bhojpur: This station is a pool habitat situated at 23^{0} 06'15.7''N latitude and 77^{0} 34'59.1" E longitudes near the Bhojpur temple. The site is an important tourist destination for the people of Bhopal city. Bed is a mixture of sand and clay over the hard rocks. Depth of this zone is about 7.0 meter. Vicinity of the zone is surrounded by hillocks hard rocks.

2. Near Pagneshwar: This station is a run habitat situated at $23^{0} 26'08.1$ "N latitude and $77^{0} 43'.49.3$ " E longitude on the Risen –Vidisha road in close proximity to the village Pagneshwar. Bed is a mixture of sand and clay over the hard rocks. Depth of this zone is about 3.5 meter. Vicinity of the zone is eroded and emergent macrophytes are found in large numbers on the either shores of the river.

3. Ramghat (Vidisha): This station is a pool habitat situated at $23^0 32' 9.8''$ N latitude and $77^0 47'45.8''$ E longitudes in the Vidisha town. This is the deepest pool observed during the course of the study with a depth of 14 meter. The left shore of the river has a ghat on the river with a temple while on the right shore, agricultural fields.

4. Halali reservoir: This station is situated in the Halali reservoir, which are situated at $23^{0} 29'9.32''$ N latitude and $77^{0} 33'11.6''$ E longitudes near the Vidisha town. The reservoir receives a massive amount of waste water generated in the city of Bhopal through Patra nala and along with the domestic sewage it receives the spill over of the Lower lake old Bhopal as well. This inflow of nutrient rich water makes the reservoir particularly productive one and therefore best suited for fish culture.

5. Upper Lake: the Upper Lake (Latitude $23^0 13' - 23^0 16'$ N and Longitude $77^0 18' - 77^0$ 24' E) of Bhopal is one of the most important water bodies of the central part of India, designated as the Ramsar site, making it the water body of global significance. The

highly productive water of the wetland makes it a very conducive environment for the growth of fishes.

4.2.2 Tapti basin

1. Parasdoh: This station is a pool habitat situated near Betul- Atner road situated at 21^{0} 40'55.9'' N latitude and 77⁰ 59' 44.2'' E longitudes. The max height of the water column is 11.5 meter, while the bed is of gravel and sand and the vicinity has large rocks.

2. Baralinga: This station is a run situated near Baralinga Shiv Temple on the Betul - Amravati road at $21^{0} 48'39.4''$ N latitude and $77^{0} 47' 08.8''$ E longitude .The bed at this station comprises of large boulders and cobbles. The right bank of the station has agricultural lands in the vicinity while the left bank is predominantly hillocks covered by forest cover. The max depth in the region ranges 2.5 meter. However stream width at this site is one of the maximum observed during the study.

3. Amarkash doh: This station is a pool habitat situated at $21^{0} 47'98.0$ " N latitude and $77^{0} 25'68.9$ " E longitudes near the Kunkhedi village. The bed of the river at this station is sandy and the shore of the river is infested with a high density of submersed weeds. The left bank of the river is hilly while the right bank of the river has agricultural fields in its vicinity and sand mining is also observed at this place. The max depth at this station is 6.0. meter.

4. Tedtali: This station is a run situated at $21^{0} 29'99.2''$ N latitude and $77^{0} 44' 77.4''$ E longitudes near the Tedtali village. The bed of the river is a mixture of clay and sand at this station and infested with weed growth. The max depth at the station 3-4 meter. Both the banks of the river have agricultural land in its vicinity and loose sand cliffs cover the vicinity of the banks of the river at this station.

5. Raitali: This station is a run situated at $21^{\circ} 28'05.2''$ N latitude and $76^{\circ} 42'90.6''$ E longitude Near Dhar village. The max depth at this station is 3-4 meter and has the same

conditions in vicinity as the previous station. The sampling reach has a riffle which is of utmost importance for some fish species like mahaseer (*Tor tor*) as this site presents the breeding site for these fish species.

6. Boat Ghat, Nepa Nagar: This station is a run situated at $21^0 25'94.0''$ N latitude and $76^0 24'05.8''$ E longitudes at Nepa Nagar. Water supplied to the Nepa mills in Nepa Nagar, and the sampling reach receives waste water from the Nepa mill and the township, degrading the water quality evident by the growth of algal blooms and prolific growth of aquatics macrophytes. The max depth of the river at this station is 2 .5 meter.

4.2.3. Chambal basin

1. Nagda: This station is a pool situated at $23^0 27'48.7"$ N latitude and $75^0 23' 55.0"$ E longitudes at Nagda town. The water is present in this region perennially even if the water in the vicinity dries up. The riverbed at this station is hard rock with a max depth of 5.92 meter.

2. Basai village: This station is a pool situated at 24° 04'32.1" N latitude and 75° 31'46.0" E longitudes near Basai village at Suwarsa, Mandsore road. The site is the upstream of the Gandhisagar Dam and is the fish landing site of MPF. The max depth at this station is around 6.67 meter.

4. Gandhi Sagar: This sampling station is situated at 24^0 41'01.3" N latitude and $75^033'55.8"$ E longitudes in Gandhisagar reservoir. This is a irrigation reservoir constructed at the Chambal river on the MP- Rajasthan border. The most developed fisheries practices are observed at this station. The maximum depth at this station 22.5 meter.

5. Kimor ghat (Kshipra river): This station is a run situated at 23^0 13'18.9'' N latitude and 75^0 47' 06.3'' E, longitude near the Mangalnath temple in the historic city of Ujjain. The water at this station is almost stagnated and profuse algal growth at the station

represents the degraded water quality at this station. The max depth at this station is 2.0 meter.

6. Gambhir Dam: This sampling station is situated at the Gambhir reservoir at 23° 12'32.1" N latitude and 75[°] 38'12.7" E longitudes. The reservoir has a max depth of 32 mt and is being used as the main source of potable water for the city of Ujjain.

4.2.4. Ken basin

1. Sonar-Ken river confluence: This sampling station is situated near Singora village at $24^0 \ 23'50.3''$ N latitude and $79^0 \ 56'18.3''$ E longitude, at the confluence of the rivers Sonar and Ken. The shoreline of the station is infested with profuse growth of macrophytes and has a depth of 7-8 mt. The bed of the river at this station is loose silt that has entered as a result of the soil erosion from the adjoining agricultural fields. This is one of the more productive sites for the fishes.

2. Near Salaiya Village: This station is a run situated at 24^{0} 48'43.4'' N latitude and 80^{0} 05'19.1'' E longitudes at near the Salaiya village. The bed of river is black eroded stone with the maximum depth of 1-2 meter, with emergent macrophytes at both the shores. The right bank at this station predominantly has agricultural fields, while the left bank is wasteland.

3. Bariyarpur Dam: This station is a deep pool situated at $24^0 50'59.7''$ N latitude and $80^0 5'46.3''$ E longitudes at the Bariyarpur dam. It is an irrigation reservoir, the catchments and command of which are agricultural fields.

4.2.5. Son basin

1. Govindgarh: This is an artificial Lake in the Rewa district situated at 24^0 14'83.9'' N latitude and 81^0 19'53.4'' E longitudes near the Govindgarh town. The water body is used for partial water supply of the Rewa town. The water body is very rich in biodiversity. The water body has a max depth of about 22.5 meter.

2. (**Deolond village**): This station is a deep pool situated at $24^0 22' 4.81''$ N latitude and $81^0 16' 8.98''$ E longitudes near the Deolon village. The maximum depth of the water column at this station is 8.0 meter. The bed at this station is sandy and shoreline is infested with emergent macrophytes.

4.2.6. Rajgarh basin

1. Bandavedra pond: This is an artificial pond situated at 23^{0} 41'42.6" N latitude and 77^{0} 04' 11.8" E longitudes on the Jaipur- Jabalpur National Highway NH 12, near the Narsingarh town. The pond is a seasonal pond, which is used as stocking pond for IMC, which is leased out by the Panchayat to the local fishermen. The local weed fishes are also reported in this pond along with the IMCs. The bed of the pond is black cotton soil.

2. Kudali pond: This is also a seasonal pond situated at 23^{0} 42' 46.7'' N latitude and 77^{0} 00' 36.7'' E longitudes on near the Kudali village. The pond is used for variety of secondary purposes including irrigation in the vicinity. The fish practices are capture fisheries other than culture fisheries.

3. Newaj River: This station is a pool situated at 24^{0} 0' 24.2'' N latitude and 76^{0} 44'28.4'' E longitudes near Rajgarh town. The maximum depth at this station is 5.5 meter with a bed being mixture of sand and clay. The right bank of the river is sandy cliff while the left bank is flat agricultural fields

5. Methodology

5.1. Details of field survey techniques

Preliminary location of the River on Map- A survey of India map was obtained at the scale of 1:10, 00.000 to locate the river and reservoirs.

Listing of location from previous studies- We tried to identify location if they have been covered in earlier studies.

Accessibility to the sites-With the help of map and consultation with People, we tried to find out the accessibility to the location so that we can cover them during the study.

Pre field visit- preliminary field visit was carried to locate the sampling points.

GPS readings- GPS reading were noted for precise location of the sampling site.

Depth- Since deep areas are considered to be hotspots of aquatic biodiversity, we measured depth with the help of a graduated rope. Deeper areas were selected for study.

River	Sites Name	Selection criteria	Location covered in
basın			earlier study
Betwa	Bhojpur	Pool Habitat	Adholia (1979), studies on
	Near Pagneshwar	Run Habitat	Hydrobiology of the river
	Near Ramghat (Vidisha)	Pool Habitat / Harbours	Betwa and fishery
	_	Endangered Species N.	Resources, P. hD Thesis,
		Chitala	Vikram University.
	Halali reservoir	Harbours Endangered	-
		Species N. Chitala	
	Upper lake	Wetland of National	Bhoj Wetland project
		Importance/ Ramsar	(1996-2003)
		site/ Migratory birds	
Tapti	Parasdoh	Pool Habitat	-
	Baralinga	Run Habitat	-
	Amarkash doh	Pool Habitat	-
	Tedtali	Run Habitat/	Karamchandani, (1967)
		(CIFRI,1967)	Survey of fish and fisheries
	Raitali (Near Dhar	Run Habitat/	of Tapti river.
	village)	CIFRI,1967)	
	Boat Ghat Nepa Nagar	Run Habitat	-
Chambal	Nagda	Pool Habitat	Dubey G.P. and Mehra R.K
	Basai village	Pool Habitat	(1959). Fish and fisheries of
	Gandhi Sagar	Dubey and Mehra, 1959	Chambal river, Kartha and

Table. 3. Sampling sites selection Criteria

		Rao et al., (1988)	Rao (1992). Environmental
			status of Gandhi Sagar
			Reservoir.
	Kimor ghat (Kshipra	Run Habitat	-
	river)		
	Gambhir Dam	Tributary of Kshipra	-
Ken	Sonar-Ken river	Pool Habitat	-
	confluence near Singora		
	village		
	Near Salaiya Village	Run Habitat	_
	Bariyarpur Dam	Deep pool	-
Son	Govindgarh lake	Wetland	-
	Son (Deolond village)	Deep Pool	-
Rajgarh	Bandavedra pond	Seasonal pond	-
	Kudali pond	Seasonal pond	_
	Newaj river	Pool Habitat	-

5.2. Physico-chemical estimation

Standard methods (APHA, 1998 Adoni, 1995) were followed for the estimation of the Physico chemical parameters viz., Temperature, Transparency, Conductivity, pH, TDS, Turbidity, Chloride, Alkanity, Free carbon dioxide, Dissolve oxygen, Total hardness, Calcium hardness and Magnesium hardness.

Temperature: - The air and water temperature at the sampling site were recorded with the help of Mercury Thermometer,. The results have been reported in degree Celsius (°C). **Transparency:-** Transparency was measured by Secchi disc (Secchi an Italian scientist deviced a method for studying the transparency of aquatic bodies)

pH: - pH was measured by digital portable pH meter, (Hanna, Italy). The instrument was standadarised with the help of buffer solution of 4.0, 7.0 and 9.2 pH, before operation.

Electrical Conductivity: - Electrical conductivity was measured by digital portable conductivity meter, (Hanna, Italy). The results have been recorded in µs/cm.

Turbidity: It is measured using a Nephlometric turbidity meter, which determines the turbidity of the sample by the scattering of light, which took place during the passage of light through it, gives the turbidity directly in NTU'S.

Total Dissolved Solids: - TDS was measured by digital portable TDS meter, (Hanna, Italy). The results have been reported in mg/l.

Chloride: - Chloride was determined by Mohar's argentometric method. Five drops of pot. Chromate indicator was added to 50 ml of water sample. Once the yellow colour developed, and then titrated against silver nitrate titrant (0.0141N), till a faint brick red colour formed. Calculation was done with the formula as;

'Cl' mg/l = $\underline{\text{vol.of titrant used x 35.46 x N x 1000}}$

ml of sample used

Alkalinity: - Two drops of phenolphthalein indicator was added to 50 ml of water sample. Pink colour developed and then titrated with (0.02N) sulphuric acid titrant, until pink colour disappears. Then add 2-3 drops methyl orange indicator, the colour changes into yellow and then titrate with same titrant until colour changes from yellow to orange. Note the total volume used in two titrations. On the other hand when no pink colour develops after adding phenolphthalein indicator, then run the sample using same procedure followed by addition of methyl orange indicator mention above for total alkalinity. Then phenolphthalein alkalinity (p) and total alkalinity (t) were calculated by using the given formula as;

Carbonate alkanity (p) as mg/l CaCO₃ = Vol. Of titrant used x 1000 ml of sample used Total alkalinity (t) as mg/l CaCO₃ = Total volume of titrant used x 1000 ml of sample used

Bicarbonate alkalinity (mg/l) = Total alkalinity - Carbonate alkanity

Free Carbon dioxide: - Free Co_2 content was determined by adding two drops of phenolphthalein indicator to 50 ml of water sample, if pink colour is not developed i.e. free Co_2 is present, then titrated with 0.027N sodium hydroxide (NaOH) titrant till the faint pink colour develops, which is the end point of the reaction. The free carbon dioxide was calculated by using formula as;

Free carbon dioxide (CO₂) mg/l = volume of titrant used x 1000 ml of sample used

Dissolved Oxygen: - Dissolved oxygen was analyzed by Winkler's method with azide modification. 125 ml of sample was carefully taken without bubbling in B.O.D bottle and 1 ml each of manganous sulphate and alkaline iodide azide solution were added one after the other, with separate pipettes. The precipitate was dissolved by adding 1 ml concentrated sulphuric acid. Then 50 ml of aliquot was titrated with 0.025N sodium thiosulphate, using starch as an indicator. The colour change was noted from blue to colorless, which is the end point of the reaction. Total volume of titrant used was noted and put into formula as;

D.O as $mg/l = (8 \times N \times 1000) \vee / V$

Where 'V' is volume of aliquot used and

'V' volume of titrant used,

8 is the molecular weight of oxygen,

'N' is the normality of titrant = 0.025N

Total Hardness: - The hardness of sample was calculated by titrating it against 0.01M EDTA titrant in presence of ammonia buffer solution and eriochrome black-T as an indicator. Titration was continued till the colour changed from wine red to clear blue. Formula used;

Total Hardness mg/l as $CaCO_3 = volume of titrant used x 1000$

ml of sample used

Calcium Hardness: - Water sample after treated with 1 ml of 8% NaOH followed by a pinch of muroxide indicator was titrated against 0.01M EDTA titrant until a colour change from salmon pink to purple. Calcium Hardness was calculated by using formula as;

Calcium Harness as mg/l as $CaCO_3 = \underline{ml. of titrant used x 1000 x 1.05}$

ml of sample used

Where 1.05 is the molecular weight of CaCO₃

Magnesium Hardness (mg/l): - Total Hardness - Calcium Harness

5.3. Fish collection, Preservation and Identification

The fishes were collected through experimental monofilamentous gillnets of different mesh sizes of 10, 20, 30,40,50,60,70,80,90,100 mm. (Arun, 1998; Mheen, 1995). Gill nets mostly fixed in the evening and hauled up next morning. The duration of operation varied between 10-12 hrs. In the morning the entire catch was brought to the landing centers.

Fish sample were collected in fresh condition from the fisherman in the morning from 6.00 am - 8.00 am. Fish sample were also collected from with help of cast nets effort. Data was collected by interacting with the fisherman living adjacent to the landing sites and market survey has also done.

While collecting the fishes maximum care was taken to keep the external morphology and that for taxonomic studies. The sampling work was standardized to a constant time and number of fishing instrument employed at each sites. The gill nets were left submerged from the early evening to the following morning. The specimens retrieved from the nets were then placed in plastic containers containing 4 % formalin. Each container was labeled with the date and sampling site number. The fishes were identified using the standard keys of Qureshi & Qureshi (1983); Shrivastava (1998) and Jayaram (1999).

The specimens were counted and weighed, after that fish preserved in 4% formalin as describe in the "Wet preservation" of fishes by Aayappan and Satyamurti (1960). In care of bigger fishes, an incision was always made on the ventral side in front of the ventral (pelvic fine) before preservation. The preservation fluid was there injected in to the muscles with the help of a hypodermic syringe. The preserved fishes were transferable to the laboratory in sealed glass bottles go as to avoid the leakage of the formalin solution filter transporting to the laboratory; Preservative solution was changed as soon as possible. Changes of preservative solution made two to three times ensure complete dehydration and after that finally preserved in glass jar

5.3. Plankton collection and identification

Planktons have been collected along with water sample for qualitative studiy. Plankton samples were collected by standard plankton nets made of belting silk number 14 (120 μ) and 25 (64 μ) and preserved in 5% formalin. The systematic identification of zooplankton done by using standard literature keys like *viz.*, Needham and Needham (1962), Pennak (1978), Tonapi (1980), APHA (1998) and Adoni (1985).

5.4. Benthic collection and identification

The samples were collected with Surber samplers. Benthic macro invertebrate in Surber sampler were collected through washing of stone and pebbles in a sampler. Later their samples screened through 30 standard sieve (11.0/mesh /cm 0.589 mm opening) and organism were hand sorted and stored in an alcohol –formalin fixative. Benthic macro invertebrate were counted and identified to genus /species using keys provided by Pennak (1978), Needham and Needham (1974), Tonapi (1980), and Adoni (1985).

5.5. Macrophytes collection and identification

A wooden quadrate (50x50 cm) was placed at different river basin of Madhya Pradesh. The macrophytes sample was washed thoroughly to get rid of adhering material. The extra water of the plants was soaked with the help of filter paper and separates the plants of each quadrate, species wise. The samples were transported to the laboratory in polythene packets and sorted out for identification.

Identification of macrophytes were completed by using following keys and manuals like water plants of the world by C.D. cook (1974), Marsh plant of India and Burma by K. Biswas and C.C. Calder (1984), Adoni (1985).

5.6. Birds Identification

The present study was conducted on the different river basin of M.P. from November to December 2007. Water birds were identified and counted from vantage points on the boat and walking along roads in the around the study area. Field visit has done usually between 800 hrs to 1700 hrs. Observations were made from a distance not more than 500-600m without disturbing birds. A binocular (Nikon 7-15x 10 magnifications) was used for the study. Important morphological characters like colours of plumage and legs and shape of the bill were noted. Identification of these waterbirds has been done using standard taxonomic keys (Salim Ali, 1996 and Ali and Ripley 1975).

Above methods as follwed given reference list below -

- Aayappan and Satyamurti (1960). Hand book of museum technology. Govt. of Madras, 1-228.
- Arun, L.K. (1998): Status sand distribution of fishes in Periyar Lake-Stream system of Southern-Western Ghats. Fish Gen. Biodiversity Conserv. Natcon Pub.05: 77-87.
- Adoni, A.D. (1985). Work book of Limnology Pratibha publishers, Sagar: 1-126.
- APHA, (1998). Standard methods for the examination of the water and waste water. 20th edition.
- Jayaram, K. C. (1999). The freshwater fishes of the Indian region, Narendra Publishing House, Delhi, 110006, India.
- 6. Qureshi, T.A. and N.A. Qureshi (1983), Indian fishes. Brij Brothers, pp. 209.
- Shrivastava, G. (1998). Fishes of UP and Bihar, Seventh Edition, Vishwavidalaya Prakashan, Chowk Varanasi, 221001, India (Pub.).
- Mheen, H. Van Der. (1995). The use of multi mesh gillnets for sampling fish stocks in reservoirs in Southern Africa. *FAO corporate Document Repository*. 1-85.

- 9. Needham, J.N. and P.R Needham (1962). A guide to the study of fresh water biology. Holden Day INC San Francisco California, 94 (3): 1-108.
- Pennak, R.W. (1989). Freshwater Invertebrates of the United States. A Wiley Inter science publication. *John Wiley & Sons Inc.* p. 628.
- Tonapi, G.T. (1980). Fresh water animal of Indian Ecological approach. Oxford and IBH Publishing Co., New Delhi, India p.341.
- Cook, C.D. (1974). The standard book for aquatic and wetlands plants of India.
- Ali, S. (1996). The Book of Indian Birds, 11th edition. The Bombay Natural History society, India.
- Ali, S. and S.D. Ripley (1975). Hand book of the Birds of India and Pakistan.Vol. 1-10 (2nd Ed.). Oxford University, Delhi.
- 15. Biswas, K. and C.C. Calder (1984). 2nd edition. Marshy plants of India.

6. Pert Chart

S.No	Task/Sub task	Year I											
		1	2	3	4	5	6	7	8	9	10	11	12
1	Appointment of Staff												
	Procurement of Material												
2	Preparation of base Maps												
3	Rapid Survey of Sampling												
	Sites												
4	Market Survey												
5	Landing Site Survey												
											\equiv	>	
6	Experimental Netting												
7	Ecological Conditions							-					
	Physico-chemical Properties												
	Phytoplankton												
	Zooplankton												
	Benthos												
	Macrophytes											>	
8	Socio-economic Studies												
	Wo	rk to k	be Con	tinued	•••••								
Target fixed for	Target fixed for the month Target achieved												

7. Survey of Pertinent literature

Extensive literature survey was conducted to collect information on previously available data and information on waterbodies of M.P and its Biodiversity. After going through the literature available following information was compiled.

Anon, (1971). Fisheries Department, M. P. Fisheries Survey in Narmada River, 1967-71.

Anon, (1981). Final report 1971-84, Rihand Reservoir (U.P.) Inland Fisheries Research Information series 2 May 1981 Central Inland Fisheries Research Institute Barrackpore.68

Arya, S. C., Rao, K.S. and S. Shrivastava (2001). Biodiversity and Fishery Potential of Narmada Basin Western Zone (M.P., India) With Special Reference to Fish Conservation. Environment and Agriculture: Agriculture and Pollution in South Asia, pp.168-112.

Atulkar, K. (2006). Ecology and Fisheries of the Tapti River at Betul District (M.P) Dissertation Report, Department of Limnology, B.U Bhopal.

Adholia, U.N. (1979). Studies on Hydrobiology of the River Betwa and its Fishery Resources PhD Thesis, Vikram University Ujjain.

Adholia, U.N. (1977). Fish fauna of the Betwa river. Geobiosis 4: 272-273.

Balapure, S. (2001). Comparative study of Fish Biodiversity in Narmada and Tapti River, Dissertation Report, Department of Limnology, B.U Bhopal.

Central inland Capture Fisheries Research Institute (1993). A Desk review Submitted to Narmada control Authority Indore).

Chakraborty, P., S. Patil and T.A. Qureshi (2007). Current diversity of Ichthyofauna of Upper Lake of Bhopal. Indian J. Applied & Pure Bio. Vol. 22 (1), 155-160.

Desai, V. R and N.P. Shrivastava (1997). Fish fauna of Ravishankar Sagar Reservoir, J.Inl. Fish .Soc.India (1): 34-41.

Desai, V. R. (1992). Endangered, Vulnerable and rare fishes of river system in Madhya Pradesh. Proceeding of the National Seminar on endangered fishes of India held during 25-26 April 1992 at N. B. F. G. R. Allah bad. Abstract No. 22.

Desai, V. R. (1970). Studies on fishery and biology of *Tor tor* (Ham) from river Narmada; J. Inland Fish. Soc. India. 2: 101-112.

Dubey, G.P and Ahmed Afroj (1995): problems of for fish conservation of Fresh water fish genetic Resource in India, and some possible solution.

Dubey, G.P. (1994). Endangered, Vulnerable and Rare fishes of West Cost River System of India, Threatened Fishes of India, Natcon Publication.4: 77-95, 1994.

Dubey, G.P. and R.R. Mehra (1959). Fish and Fisheries of Chambl River proc. All India Congress Zoo. (2):647-65.

Dubey, G.P. and M.N.Verma (1965). A preliminary study of the Fish fauna of MadhyaPradesh, Vikram University Journal Vol. 8.No. 4.Feb:52-59.

Dubey, G.P. (2007). Fish Fauna of MadhyaPradesh (1956-2001) and its Present status, Fishing chimes Vol.26, No.10 January 2007, page No. 83-88.

Hora, S. L. and K. K. Nair (1941). Fishes of Satpura Range, Hoshangabad District, Central Province, Rec. Indian Mus. 43(3): 361-373.
Hora, S. L. (1949). The Fish fauna of the Rihand River and its Zoogeographical significance Zoo. Soc. India 1.1-7.

Indian council of agriculture research Barrack pore (1991). Sociological survey of the fishing families of Narmada River.

Karamchandani, S. J., V.R.Desai, Pisolkar, M. D. and G. K. Bhatnagar (1967). Biological investigation on the fish and fisheries of Narmada River (1958-66). Bull cent. Inland Fish. Res. Inst. Barrack pore (10): 40 p. (Mimeo).

Karamchandani, S. J and M. D. Pisolkar (1967). Survey of the fish and fisheries of Tapti river, Surv. Rep. Cent. Inl. Fish, Res.Inst. Barrackpore, 4:29.

Kartha, K.N. and K.S. Rao (1992). Environmental status of Gandhi Sagar reservoir. Fishery technology vol. 29 page no. 14-20.

Karamkar, A. K. and A.K. Dutta (1988). On a collection of fishes From Bastar distt, Madhya Pradesh. Rec.Zoo. Surv.India OCC paper No 98.

Menon, A.G.K. (1988). Conservation of Itchyofauna of India, conservation and management of inland capture fish resources. Bulletin no. 57:23:33.CIFRI. Barrack pore. India.

Motwani, M.P. and A. David (1957). River of the Sone with observations on the Zoogeographical significance Zool Soc. India 9 (1).9-15.

Motwani, M.P. (1970). Fish and Fisheries of Rihand Reservoir (Govind Ballabh panth Sagar), Department of Fisheries (U.P.), Lucknow.

Malviya, R.B. (1961). A list of Fishes from Jabalpur M.P. India Proc. Natural Academy Science 31(3), 347-54.

Nath, D. and N.P. Srivastava (2001). Physico-chemical characteristics of Narmada for the stretch Sandia to Mola in M.P. state in the context of construction of reservoirs on the river and its tributaries. J. Inland fish.soc.India, 33 (1), 2001: 17-24.

Rao, K. S., S. N. Chatterjee and A. K. Singh (1991). Studies on preimpoudment fishery potential of Narmda Basin (Western Region) in the context of Indian Sagar, Maheshwar, Omkareshwar and Sardar Sarovar reservoirs, J. Inland Fish India 23(1): 34-91.

Saxena, R. and P. Shrivastava (1989). A Check list of Fish fauna of Kunwari river (Tributary of Chambal river). North M.P. J. Inland Fish Soc.India 21(2): 41-44.

Sinha, D.K. and B.C. Jha (1998). The Ganga Environment and Fisheries CIFRI, Barrack pore, 142 p.

Soni, D.D, (1960). Fish Fauna of Upper lake, Bhopal (Betwa river), Proc. Indian Soc. Congress Zool. (ZSI): 639-64.

Soni, D.D.(1960). Fish Fauna of Lower Lake, Bhopal (Betwa River), Proc. First All India Congress Zool.(2): 647-65.

Swaroop, H. (1953). Fish Fauna of Sagar Lake, Sagar University Journal. Vol. No. 3.

Sahu, R. (2005-2006): Diversity of Itchyofauna and Fishery from Bansagar Dem with special Reference to New Ramnagar Sites, Satna (M.P), M.Phil. Dissertation Report, A.P.S.University Rewa, (M.P)

Unni, K.S. and K. Sankaran (1996). Ecology of River Narmada. APH publishing Corporation, New Delhi. P.371.

Vyas, V., Bara, S., Parashar, V., Damde, D. and R. P. Tuli (2006). Temporal Variation in Fish Biodiversity of River Narmada in Hoshangabad Region. National Journal of Life Sciences, Vol: 3(3), 301-307.

8. Fish biodiversity documentation

8.1. Fresh water Fish biodiversity of India

Ichthyodiversity refers to variety of fish species. Depending on context and scale, it could refer to alleles or genotypes within piscian population, to species of life forms within a fish community, and to species or life forms within a fish community and to species or life forms across aquaregimes (Burton et al., 1992). Biodiversity is also essential for stabilization of ecosystems, protection of overall environmental quality, for understanding intrinsic worth of all species on the earth (Ehrlich and Wilson, 1991).

Studies of freshwater fishes in the Indian subcontinent have been limited to scattered works on commercial fisheries and even these have been largely restricted to some of the major river systems like the Ganges and the Yamuna. Out of the 2,500 species of freshwater fishes that have been recognized in the Indian subcontinent, 930 are categorized as freshwater species (Jayaram 1999). 1570 are marine (Kar, 2003). Considerable studies on ichthyofaunal diversity have been carried out during the last few decades (Day, 1967; Jayaram, 1981; Menon, 1992; Shaji, 1995; Sarkar and Banerjee, 2000; Arunachalum, 2000; Daniel, 2001; Bhat, 2002; Mishra et al., 2003; Bossuyt, 2004; Rajalakshmi and Sreelatha, 2005).

Jhingran (1991) referred the important river system of India are Ganga river system having a stretch of 1600 km from Haridwar (U.P) to Lalgotoghat (West Bengal) giving place to 3382 species, Brahmaputra 126 species , Mahanadi, 99 species, Cauvery, 80 species, Narmada 95 species and Tapti 57 species.

8.1.1. Fish biodiversity of Betwa basin and their composition

During the study a total of 67 fish species belonging to 19 families were recorded in Betwa basin of Madhya Pradesh. The most dominant family was Cyprinidae having 33 species (49%) followed by Bagridae was contributed 5 species (9%) and rests of families were order of abundance. We have selected three water bodies in Betwa basin viz., Betwa river, Halali reservoir and Upper lake Bhopal. 60 species were recoded in Betwa river, 31 species encountered in Halali reservoir and 37 species were identified in Upper Lake. Overall 67 fish species encountered throughout the study while the maximum 41 species were recorded in winter, 40 species were recorded in summer, 39 species were found in pre monsoon and 38 species were recorded in post monsoon.

8.1.2. Fish abundance of fishes in Betwa basin

The study a total of 1807 individuals were counted out of which 845 individuals were found in Betwa River, 507 individuals counted in Halali reservoir and 455 individuals were counted in Upper Lake. The most dominant family was Cyprinidae having 1244 individuals followed by Bagridae was contributed 80 individuals and rests of families were order of abundance.

8.1.3. Fish biodiversity of Chambal basin and their composition

We have includes five major water bodies in Chambal basin viz., Chambal river, Gandhi Sagar reservoir, Gambhir river, Gambhir reservoir and Kshipra river. The totals of 52 species belonging to 15 families were recorded. 51 species belonging to 14 families were recorded in Chambal river, 46 species were found in Gandhi Sagar reservoir, 30 species belonging to 12 families were recorded in Gambhir reservoir, 23 species belonging to 10 families were recorded in Gambhir river and 22 species belonging to 11 families were recorded in Kshipra river. The most dominant family was Cyprinidae representing 25 (47%) species followed by Bagridae was contributed 6 (11%) species.

During the period of study 52 fish species encountered while the maximum 36 species were recorded in summer, 33 species were recorded in post monsoon, 31 species were found in pre monsoon and 30 species were recorded in winter.

8.1.4. Fish abundance of fishes in Chambal basin

The study a total of 2179 individuals were counted out of which 679 individuals were found in Chambal River, 559 individuals counted in Gandhi Sagar reservoir, 363 individuals were counted in Gambhir reservoir, 294 individuals counted in Gambhir river and 284 individuals were counted in Shipra river. The most dominant family was

Cyprinidae having 1497 (69%) individuals followed by Schilbeidae family was contributed 128 (6%) individuals and rests of families were order of abundance.

8.1.5. Fish biodiversity of Tapti basin and their composition

During the study a total of 57 fish species representing 15 different families were recorded in Tapti River in Madhya Pradesh. The most dominant family was Cyprinidae having 28 species (48%) followed by Bagridae was contributed 5 species (9%) and rest of families was order of abundance.

Overall 57 fish species encountered in the different seasons out which the maximum 36 species were recorded in premonsoon, 35 species were recorded in post monsoon, 32 species were found in winter and 31 species were recorded in summer.

8.1.6. Fish abundance of fishes in Tapti basin

The study a total of 549 individuals were counted out of which 142 individuals were found in summer, 141 individuals counted in premonsoon and 115 individuals were counted in post monsoon. The most dominant family was Cyprinidae having 362(61.97%) individuals followed by Bagridae family was contributed 22 (4%) individuals and rests of families were order of abundance.

8.1.7. Fish biodiversity of Ken basin and their composition

A total of 43 species belonging to 14 families were recorded in Ken basin. Most dominant family was Cyprinidae contributed 20 (46%) species followed by Bagridae 5 (11.62%) species. Highest species diversity was recorded in winter, 27 species encountered in premonsoon, 25 species were found in summer and 24 species were recorded in post monsoon.

8.1.8. Fish abundance of fishes in Ken basin

The study a total of 316 individuals were counted out of which 95 individuals were found in premonsoon, 64 individuals counted in post monsoon, 91 individuals were counted in winter and 66 individuals were counted in summer. The most dominant family was Cyprinidae having 209 (66.13%) individuals followed by Bagridae family was contributed 20 (6.32%) individuals and rests of families were order of abundance.

8.1.9. Fish biodiversity of Son basin and their composition

A total of 44 species belonging to 15 families were recorded in Son basin. The area covered under this study includes Govindgarh Lake and Bansagar reservoir. The total 24 species belonging to 11 families were indentified in Govindgarh Lake and 42 species belonging to 14 families were recorded in Bansagar reservoir.

Most dominant family was Cyprinidae contributed 20 (46%) species followed by Bagridae 5 (11.62%) species. Highest species diversity 28 species were recorded in winter, 27 species encountered in premonsoon, 25 species were found in summer and 24 species were recorded in post monsoon.

8.1.10. Fish abundance of fishes in Son basin

The study a total of 586 individuals were counted out of which 325 individuals counted in Govindgarh lake and 393 individuals were counted in Bansagar reservoir. The most dominant family was Cyprinidae having 388 (66.21%) individuals followed by Bagridae family was contributed 28 (7.67%) individuals and rests of families were order of abundance.

8.1.11. Fish biodiversity of Rajgarh District their composition

Present study includes three water bodies; two are ponds (Bandavedra and Kudali) one is Nawaj river in Rajgarh district. Overall 39 species belonging to 10 families recorded were recorded. The most dominant family was Cyprinidae having 22 (56.41%) species followed by Bagridae family was contributed 4 species and rests of families were order of abundance.

During the study period, maximum 26 species were recorded in winter, 25 species encountered in premonsoon, 21 species in post monsoon and 24 species were found in summer.

8.1.12. Fish abundance of fishes in Rajgarh District

The study a total of 393 individuals were counted out of which maximum 150 individuals counted in winter, 99 individuals were counted in premonsoon, 84 species were counted in summer and 60 species were recorded in post monsoon. The most dominant family was Cyprinidae having 270 (68.70%) individuals followed by Bagridae family was contributed 28 (7.12%) individuals and rests of families were order of abundance.

C. No	Smoother	Common	Betwa Basin		
5. NO	Species	Name	Datava	Halali	Linnar
			Delwa	Pasaryoir	Upper
	Family-Cyprinidae		Kivei	Keservon	Lake
1	Amblypharogodon mola	Dhawai	1		1
2	Labeo dero	Dudiya			1
3	Labeo rohita	Rohu		1	
4	Labeo angra	water	1		1
5	Labeo fimbriatus	-	1		
6	Cirrhinus mrigala	Naren	1	1	1
		Common			
7	Cyprinus carpio	carp	1	1	
8	Catla catla	catla		1	
9	Esomus danricus	-			1
8	Puntius conchonius	Khardi	1		
9	Puntius saphore	Kharpata	1	1	
10	Puntius dorsalis	putty	1		
11	Puntius ticto	Kadita	1		1
12	Puntius titius	-	1		
13	Danio davario	Raiya	1		1
14	Oxygaster bacaila	Chal	1	1	
15	Oxygaster clupeoides	Chal	1		
16	Rasbora elanga	Darai	1		1
17	Garra lamta	Malya			1
18	Barilius barila	Fegata	1		
19	Tor tor	Badas	1		
	Family-Cobitidae				
20	Lepidocephalichthys guntea	Gunguch	1		1

Table.4. Fish diversity of betwa basin in summer season

	Family-Notopteridae				
21	Notopterus notopterus	Patola	1	1	1
	Family-Ambassidae				
22	Chanda nama	Kakhai	1		1
	Family-Gobiidae				
23	Glossogobius giuris	Gillu	1		1
	Family-Mastacembelidae				
24	Mastacembelus pancalus	Bam	1		1
	Family-Schlibeidae				
25	Clupisoma garua	Bekeri	1		
25	Silondia silonia		1		
	Family-Siluridae				
27	Ompok bimaculatus		1	1	1
28	Wallago attu	Padhin	1	1	
	Family-Bagridae				
29	Mystus cavasius	kittu	1		
30	Mystus seenghala	Sigad		1	
31	Mystus bleekeri	Kittu	1	1	1
32	Rita rita	Gagra	1		
	Family-Clupeidae				
33	Gudusia chapra	Chapra		1	
	Family-Belonidae				
34	Xenentodon cancila	Suza Bam	1	1	
	Family-Ophiocephalidae				
35	Channa punctatus	Karra	1		
36	Channa striatus	Kabra	1		1
	Family-Saccobranchidae				
37	Heteropneustes fossilis	Singhi	1		1
	Family-Claridae				
38	Clarias batrachus	Magur	1		
	Family-Mugilidae				
39	Rhinomugil corsula	Corsula	1	1	
	Family-Anabantidae				
40	Colisa fasciatus	Colisa			1
		Total-	34	14	19

S No	Spacies	Common Name		Betwa Basin	L
5.110	Species	Manie	Betwa	Halali	Upper
			River	Reservoir	Lake
	Family-Cyprinidae				
1	Amblypharogodon mola	Dhawai	1		1
2	Labeo Bata	Bata	1		
3	Labeo gonius	Khursa	1	1	
4	Labeo rohita	Rohu	1	1	1
5	Labeo calbasu	Kalot	1	1	1
6	Labeo dero	Dudiya			1
7	Labeo angra	water	1		1
8	Labeo dussuniere				1
9	Catla catla	Catla	1	1	1
10	Chela laubuca	Chalar	1		
11	Puntius conchonius	Khardi	1		1
12	Puntius saphore	Kharpata		1	1
13	Puntius sarana	Sikra	1	1	1
14	Puntius ticto	Kadita	1		1
15	Danio davario	Raiya	1		1
16	Garra gotyla	Malya	1	1	
17	Oxygaster bacaila	Chal	1	1	
18	Oxygaster clupeoides	Chal	1		
19	Rasbora daniconius	Darai	1		
20	Osteobrama cotio	Mohiya	1		1
21	Barilius Bandelisis	Fegata	1	1	
	Family-Cobitidae				
22	Lepidocephalichthys guntea	Gunguch	1		1
	Family-Notopteridae				
23	Notopterus notopterus	Patola	1	1	1
	Family-Ambassidae				
24	Chanda ranga	Kakhai	1		1
25	Chanda nama	Kakhai	1		1
	Family-Gobiidae				
26	Glossogobius giuris	Gillu	1		1
	Family-Mastacembelidae				
27	Mastacembelus armatus	Bam	1	1	1
	Family-Schlibeidae				

Table.5. Fish diversity of betwa basin in Pre-monsoon season

28	Clupisoma garua	Bekeri	1		
	Family-Siluridae				
29	Ompok bimaculatus		1	1	1
30	Wallago attu	Padhin		1	
	Family-Bagridae				
31	Mystus cavasius	Kittu	1		
32	Mystus aor	Diger		1	
33	Rita rita	Gagra	1		
	Family-Clupeidae				
34	Gonialosa manmina	Baroti	1		1
	Family-Belonidae				
35	Xenentodon cancila	Suza Bam		1	1
	Family-Nandidae				
36	Nandus nandus	Kabri	1		
	Family-Ophiocephalidae				
37	Channa marulius	Samal		1	
38	Channa gachua	Samal			1
	Family-Cichlidae				
39	Tilapia mossambica	Tilapia	1		
		Total-			
		Total-	31	16	23

Table.6. Fish diversity of betwa basin in post-monsoon season

		Common	Betwa Basin		
S. No	Species	Name			
			Betwa	Halali	Upper
			River	Reservoir	Lake
	Family-Cyprinidae				
1	Labeo Bata	Bata	1		
2	Labeo gonius	Khursa	1	1	
3	Labeo boga	Bhangan		1	
4	Labeo rohita	Rohu		1	1
5	Labeo calbasu	Kalot	1	1	1
6	Labeo angra	water	1		1
7	Labeo fimbriatus	-	1		
8	Cirrhinus mrigala	Naren		1	1
		Common			
9	Cyprinus carpio	carp		1	
10	Catla catla	Catla		1	1
11	Puntius saphore	Kharpata	1	1	1

12	Puntius dorsalis	Putty	1		
13	Puntius sarana	Sikra	1	1	1
14	Puntius titius	-	1		
15	Garra gotyla	Malya	1	1	
16	Oxygaster bacaila	Chal	1	1	
17	Rasbora daniconius	Darai	1		
18	Osteobrama cotio	Mohiya	1		1
19	Barilius Bandelisis	Fegata	1	1	
	Family-Cobitidae				
20	Lepidocephalichthys guntea	Gunguch	1		1
21	Nemacheilus botia	Gunguch		1	1
	Family-Notopteridae				
22	Notopterus notopterus	Patola		1	1
	Family-Ambassidae				
23	Chanda nama	Kakhai	1		1
	Family-Gobiidae				
24	Glossogobius giuris	Gillu	1		1
	Family-Schlibeidae				
25	Clupisoma garua	Bekeri	1	1	
26	Eutropiichthys vacha	Vacha	1	1	
27	Silondia silonia		1		
	Family-Siluridae				
28	Ompok bimaculatus		1	1	1
29	Wallago attu	Padhin		1	1
	Family-Bagridae				
30	Mystus cavasius	kittu	1		
31	Mystus bleekeri	Kittu	1	1	1
32	Mystus seenghala	Sighad	1	1	1
33	Mystus aor	Diger	1	1	
	Family-Belonidae				
34	Xenentodon cancila	Suza Bam	1	1	1
	Family-Ophiocephalidae				
35	Channa marulius	Samal	1	1	
36	Channa gachua	Samal	1		1
	Family-Saccobranchidae				
37	Heteropneustes fossilis	Singhi	1		1
	Family-Cichlidae				
38	Tilapia mossambica	Tilapia	1		
			30	23	20

G.N.	G	Common	E	Betwa Basin	
5. NO	Species	Name	Detrus	Halali	Lanan
			River	Reservoir	Upper Lake
	Family-Cyprinidae				Lake
1	Amblypharogodon mola	Dhawai	1		1
2	Labeo Bata	Bata	1	1	
3	Labeo rohita	Rohu		1	1
4	Labeo calbasu	Kalot	1	1	1
5	Labeo fimbriatus	-	1		
6	Labeo gonius			1	
7	Labeo boga	Bhangan	1		
8	Cirrhinus mrigala	Naren		1	1
	<u> </u>	Common			
9	Cyprinus carpio	carp		1	
10	Catla catla	Catla		1	1
11	Chela laubuca	Chalar	1		
12	Puntius conchonius	Khardi	1		1
13	Puntius sarana	Sikra		1	1
14	Puntius saphore		1	1	
15	Puntius ticto	Kadita	1		1
16	Danio davario	Raiya	1		1
17	Oxygaster bacaila	Chal	1	1	
18	Oxygaster gora	Chal	1		1
19	Rasbora elanga	Darai			1
20	Rasbora daniconius	Darai	1	1	
21	Osteobrama cotio	Mohiya	1	1	1
	Family-Cobitidae				
22	Lepidocephalichthys guntea	Gunguch	1		1
23	Nemacheilus botia	Gunguch	1		1
	Family-Notopteridae				
24	Notopterus notopterus	Patola	1	1	1
25	Notopterus Chitala	Chitala		1	
	Family-Sisoridae				
26	Bagarius bagarius	Andha	1		
	Family-Mastacembelidae				
27	Mastacembelus pancalus	Bam	1		1
28	Mastacembelus armatus	Bam	1	1	1

Table.7. Fish diversity of betwa basin in winter season

	Family-Schlibeidae				
29	Clupisoma garua	Bekeri	1	1	
30	Silondia silonia			1	
	Family-Siluridae				
31	Ompok bimaculatus		1	1	1
32	Wallago attu	Padhin		1	
	Family-Bagridae				
33	Mystus tengra	tengra	1		
34	Mystus bleekeri	Kittu	1	1	1
35	Mystus seenghala	Sighad		1	
	Family-Clupeidae				
36	Gudusia chapra	Chapra		1	1
37	Gonialosa manmina	Baroti	1		
	Family-Belonidae				
38	Xenentodon cancila	Suza Bam	1	1	1
	Family-Mugilidae				
39	Rhinomugil corsula	Corsula		1	
	Family-Anabantidae				
40	Colisa fasciatus	Colisa			1
	Family-Cichlidae				
41	Tilapia mossambica	Tilapia	1		
			27	24	22

Table.8. Overall fish diversity of betwa basin during the study

		Common	Betwa Basin		
S. No	Species	Name			
			Betwa	Halali	Upper
			River	Reservoir	Lake
	Family-Cyprinidae				
1	Amblypharogodon mola	Dhawai	1		1
2	Labeo Bata	Bata	1	1	
3	Labeo gonius	Khursa	1	1	
4	Labeo boga	Bhangan	1	1	
5	Labeo rohita	Rohu	1	1	1
6	Labeo calbasu	Kalot	1	1	1
7	Labeo dero	Dudiya			1
8	Labeo angra	Water	1		1
9	Labeo fimbriatus	-	1		
10	Labeo dussuniere				1
11	Cirrhinus mrigala	Naren	1	1	1

		Common			
12	Cyprinus carpio	carp	1	1	
13	Catla catla	Catla	1	1	1
14	Chela laubuca	Chalar	1		
15	Esomus danricus	-			1
16	Puntius conchonius	Khardi	1		1
17	Puntius saphore	Kharpata	1	1	1
18	Puntius dorsalis	Putty	1		
19	Puntius sarana	Sikra	1	1	1
20	Puntius ticto	Kadita	1		1
21	Puntius titius	-	1		
22	Danio davario	Raiya	1		1
23	Garra gotyla	Malya	1	1	
24	Oxygaster bacaila	Chal	1	1	
25	Oxygaster gora	Chal	1		1
26	Oxygaster clupeoides	Chal	1		
27	Rasbora elanga	Darai	1		1
28	Rasbora daniconius	Darai	1	1	
29	Osteobrama cotio	Mohiya	1	1	1
30	Garra lamta	Malya			1
31	Barilius Bandelisis	Fegata	1	1	
32	Barilius barila	Fegata	1		
33	<i>Tor tor</i>	Badas	1		
	Family-Cobitidae				
34	Lepidocephalichthys guntea	Gunguch	1		1
35	Nemacheilus botia	Gunguch		1	1
	Family-Notopteridae				
36	Notopterus notopterus	Patola	1	1	1
37	Notopterus Chitala	Chitala	1	1	
	Family-Ambassidae				
38	Chanda ranga	Kakhai	1		1
39	Chanda nama	Kakhai	1		1
	Family-Sisoridae				
40	Bagarius bagarius	Andha	1		
	Family-Gobiidae				
41	Glossogobius giuris	Gillu	1		1
	Family-Mastacembelidae				
42	Mastacembelus pancalus	Bam	1		1
43	Mastacembelus armatus	Bam	1	1	1
	Family-Schlibeidae				

44	Clupisoma garua	Bekeri	1	1	
45	Eutropiichthys vacha	Vacha	1	1	
46	Silondia silonia		1	1	
	Family-Siluridae				
47	Ompok bimaculatus		1	1	1
48	Wallago attu	Padhin	1	1	1
	Family-Bagridae				
49	Mystus cavasius	kittu	1		
50	Mystus tengra	tengra	1		
51	Mystus bleekeri	Kittu	1	1	1
52	Mystus seenghala	Sighad	1	1	1
53	Mystus aor	Diger	1	1	
54	Rita rita	Gagra	1		
	Family-Clupeidae				
55	Gonialosa manmina	Baroti	1		1
56	Gudusia chapra	Chapra		1	1
	Family-Belonidae				
57	Xenentodon cancila	Suza Bam	1	1	1
	Family-Nandidae				
58	Nandus nandus	Kabri	1		
	Family-Ophiocephalidae				
59	Channa marulius	Samal	1	1	
60	Channa gachua	Samal	1		1
61	Channa punctatus	Karra	1		
62	Channa striatus	Kabra	1		1
	Family-Saccobranchidae				
63	Heteropneustes fossilis	Singhi	1		1
	Family-Claridae				
64	Clarias batrachus	Magur	1		
	Family-Mugilidae				
65	Rhinomugil corsula	Corsula	1	1	
	Family-Anabantidae				
66	Colisa fasciatus	Colisa			1
	Family-Cichlidae				
67	Tilapia mossambica	Tilapia	1		
			60	31	37

Figure 2. Family wise species composition of betwa basin of M.P.

~		Common	Betwa Basin		
S. No	Species	Name	D (TT 1 1	TT
			Betwa	Halali Basaryoir	Upper
	Eamily Cynrinidae		River	Reservoir	Lake
1	Amhlumhana ao dan mala	Dhawai	6		12
	Ambiypharogoaon mola	Dilawai	0		15
2	Labeo aero	Dudiya		0	Z
3		Konu	2	0	2
4	Labeo angra	water	<u> </u>		3
5		-	2	10	4
6	Cirrhinus mrigala	Naren	2	10	4
/	Cyprinus carpio	Common carp	3	6	
8	Catla catla	catla		5	6
9	Esomus danricus	-	10		6
8	Puntius conchonius	Khardi	<u> </u>	10	
9	Puntius saphore	Kharpata	5	12	
10	Puntius dorsalis	putty	11		1.1
	Puntius ticto	Kadita	15		11
12	Puntius titius	-	6		
13	Danio davario	Raiya	16		15
14	Oxygaster bacaila	Chal	25	30	
15	Oxygaster clupeoides	Chal	2		
16	Rasbora elanga	Darai	3		3
17	Garra lamta	Malya			2
18	Barilius barila	Fegata	5		
19	<i>Tor tor</i>	Badas	1		
	Family-Cobitidae				
20	Lepidocephalichthys guntea	Gunguch	5		6
	Family-Notopteridae				
21	Notopterus notopterus	Patola	2	6	3
	Family-Ambassidae				
22	Chanda nama	Kakhai	6		11
	Family-Gobiidae				
23	Glossogobius giuris	Gillu	6		10
	Family-Mastacembelidae				
24	Mastacembelus pancalus	Bam	5		2
	Family-Schlibeidae				
25	Clupisoma garua	Bekeri	4		
25	Silondia silonia		3		

Table 9. Fish abundance of betwa basin in summer season

	Family-Siluridae				
27	Ompok bimaculatus		5	5	6
28	Wallago attu	Padhin	4	4	
	Family-Bagridae				
29	Mystus cavasius	kittu	6		
	Mystus seenghala	Sigad		2	
30	Mystus bleekeri	Kittu	5	3	10
31	Rita rita	Gagra	1		
	Family-Clupeidae				
32	Gudusia chapra	Chapra		2	
	Family-Belonidae				
33	Xenentodon cancila	Suza Bam	3	2	
	Family-Ophiocephalidae				
35	Channa punctatus	Karra	2		
36	Channa striatus	Kabra	1		2
	Family-Saccobranchidae				
37	Heteropneustes fossilis	Singhi	1		2
	Family-Claridae				
38	Clarias batrachus	Magur	2		
	Family-Mugilidae				
39	Rhinomugil corsula	Corsula	3	6	
	Family-Anabantidae				
40	Colisa fasciatus	Colisa			2
		Total-	181	101	113

Table 10. Fish abundance of betwa basin in pre-monsoon season

S No	Species	Common	Betwa Basin		
5.110	Species	Ivanie	Betwa	Halali	Unner
			River	Reservoir	Lake
	Family-Cyprinidae				
1	Amblypharogodon mola	Dhawai	10		6
2	Labeo Bata	Bata	3		
3	Labeo gonius	Khursa	3	3	
4	Labeo rohita	Rohu	4	5	3
5	Labeo calbasu	Kalot	5	4	5
6	Labeo dero	Dudiya			2
7	Labeo angra	water	3		2
8	Labeo dussuniere				2

9	Catla catla	Catla	3	2	4
10	Chela laubuca	Chalar	11		
11	Puntius conchonius	Khardi	12		8
12	Puntius saphore	Kharpata		8	25
13	Puntius sarana	Sikra	10	9	3
14	Puntius ticto	Kadita	8		15
15	Danio davario	Raiya	5		3
16	Garra gotyla	Malya	6	15	
17	Oxygaster bacaila	Chal	25	5	
18	Oxygaster clupeoides	Chal	3		
19	Rasbora daniconius	Darai	12		
20	Osteobrama cotio	Mohiya	3		10
21	Barilius Bandelisis	Fegata	2	4	
	Family-Cobitidae				
22	Lepidocephalichthys guntea	Gunguch	6		2
	Family-Notopteridae				
23	Notopterus notopterus	Patola	2	2	1
	Family-Ambassidae				
24	Chanda ranga	Kakhai	5		6
25	Chanda nama	Kakhai	6		2
	Family-Gobiidae				
26	Glossogobius giuris	Gillu	2		5
	Family-Mastacembelidae				
27	Mastacembelus armatus	Bam	2	1	2
	Family-Schlibeidae				
28	Clupisoma garua	Bekeri	2		
	Family-Siluridae				
29	Ompok bimaculatus		2	5	5
30	Wallago attu	Padhin		2	
	Family-Bagridae				
31	Mystus cavasius	Kittu	2		
32	Mystus aor	Diger		1	
33	Rita rita	Gagra	1		
	Family-Clupeidae				
34	Gonialosa manmina	Baroti	2		1
	Family-Belonidae				
35	Xenentodon cancila	Suza Bam		4	1
	Family-Nandidae				
36	Nandus nandus	Kabri	1		

	Family-Ophiocephalidae				
37	Channa marulius	Samal		2	
38	Channa gachua	Samal			2
	Family-Cichlidae				
39	Tilapia mossambica	Tilapia	3		
			164	72	115

 Table 11.
 Fish abundance of betwa basin in post-monsoon season

S. No	Species	Common Name	Betwa Basin		
	^		Betwa	Halali	Upper
			River	Reservoir	Lake
	Family-Cyprinidae				
1	Labeo Bata	Bata	10		
2	Labeo gonius	Khursa	6	4	
3	Labeo boga	Bhangan		2	
4	Labeo rohita	Rohu		6	3
5	Labeo calbasu	Kalot	10	5	2
6	Labeo angra	water	5		4
7	Labeo fimbriatus	-	3		
8	Cirrhinus mrigala	Naren		3	5
9	Cyprinus carpio	Common carp		10	
10	Catla catla	Catla		8	6
11	Puntius saphore	Kharpata	10	12	10
12	Puntius dorsalis	Putty	15		
13	Puntius sarana	Sikra	12	11	5
14	Puntius titius	-	9		
15	Garra gotyla	Malya	10	8	
16	Oxygaster bacaila	Chal	50	23	
17	Rasbora daniconius	Darai	23		
18	Osteobrama cotio	Mohiya	15		15
19	Barilius Bandelisis	Fegata	3	3	
	Family-Cobitidae				
20	Lepidocephalichthys guntea	Gunguch	11		7
21	Nemacheilus botia	Gunguch		12	6
	Family-Notopteridae				
22	Notopterus notopterus	Patola		3	4
	Family-Ambassidae				
23	Chanda nama	Kakhai	10		10

	Family-Gobiidae				
24	Glossogobius giuris	Gillu	5		5
	Family-Schlibeidae				
25	Clupisoma garua	Bekeri	15	7	
26	Eutropiichthys vacha	Vacha	5	8	
27	Silondia silonia		6		
	Family-Siluridae				
28	Ompok bimaculatus		8	7	8
29	Wallago attu	Padhin		4	3
	Family-Bagridae				
30	Mystus cavasius	kittu	2		
31	Mystus bleekeri	Kittu	6	3	7
32	Mystus seenghala	Sighad	4	2	2
33	Mystus aor	Diger	2	3	
	Family-Belonidae				
34	Xenentodon cancila	Suza Bam	3	2	1
	Family-Ophiocephalidae				
35	Channa marulius	Samal	1	2	
36	Channa gachua	Samal	2		2
	Family-Saccobranchidae				
37	Heteropneustes fossilis	Singhi	1		2
	Family-Cichlidae				
38	Tilapia mossambica	Tilapia	6		
			268	148	107

Table 12. Fish abundance of betwa basin in winter season

		Common	Betwa Basin		
S. No	Species	Name			
			Betwa	Halali	Upper
			River	Reservoir	Lake
	Family-Cyprinidae				
1	Amblypharogodon mola	Dhawai	12		10
2	Labeo Bata	Bata	10	8	
3	Labeo rohita	Rohu		10	5
4	Labeo calbasu	Kalot	8	6	3
5	Labeo fimbriatus	-	3		
6	Labeo gonius			4	
7	Labeo boga	Bhangan	2		
8	Cirrhinus mrigala	Naren		6	5

		Common			
9	Cyprinus carpio	carp		5	
10	Catla catla	Catla		6	3
11	Chela laubuca	Chalar	13		
12	Puntius conchonius	Khardi	22		12
13	Puntius sarana	Sikra		12	6
14	Puntius saphore		11	25	
15	Puntius ticto	Kadita	15		15
16	Danio davario	Raiya	20		20
17	Oxygaster bacaila	Chal	33	25	
18	Oxygaster gora	Chal	4		3
19	Rasbora elanga	Darai			4
20	Rasbora daniconius	Darai	15	13	
21	Osteobrama cotio	Mohiya	11	14	1
	Family-Cobitidae				
	Lepidocephalichthys				
22	guntea	Gunguch	6		6
23	Nemacheilus botia	Gunguch	7		5
	Family-Notopteridae				
24	Notopterus notopterus	Patola	4	5	3
25	Notopterus Chitala	Chitala		2	
	Family-Sisoridae				
26	Bagarius bagarius	Andha	1		
	Family-Mastacembelidae				
27	Mastacembelus pancalus	Bam	2		1
28	Mastacembelus armatus	Bam	3	3	2
	Family-Schlibeidae				
29	Clupisoma garua	Bekeri	7	14	
30	Silondia silonia			3	
	Family-Siluridae				
31	Ompok bimaculatus		6	5	7
32	Wallago attu	Padhin		3	
	Family-Bagridae				
33	Mystus tengra	tengra	1		
34	Mystus bleekeri	Kittu	6	7	2
35	Mystus seenghala	Sighad		2	
	Family-Clupeidae				
36	Gudusia chapra	Chapra		3	2
37	Gonialosa manmina	Baroti	3		
	Family-Belonidae				

38	Xenentodon cancila	Suza Bam	2	2	2
	Family-Mugilidae				
39	Rhinomugil corsula	Corsula		3	
	Family-Anabantidae				
40	Colisa fasciatus	Colisa			3
	Family-Cichlidae				
41	Tilapia mossambica	Tilapia	5		
			232	186	120

Table 13. Overall fish abundance of betwa basin during the study

a	a .	Common	Betwa Basin		
S. No	Species	Name	. .		
			Betwa	Halali	Upper
			Kiver	Reservoir	Lake
	Family-Cyprinidae		• •		•
1	Amblypharogodon mola	Dhawai	28		29
2	Labeo Bata	Bata	23	8	
3	Labeo gonius	Khursa	9	11	
4	Labeo boga	Bhangan	2	2	
5	Labeo rohita	Rohu	4	29	11
6	Labeo calbasu	Kalot	23	15	10
7	Labeo dero	Dudiya			4
8	Labeo angra	Water	11		9
9	Labeo fimbriatus	-	8		
10	Labeo dussuniere				2
11	Cirrhinus mrigala	Naren	2	19	14
12	Cyprinus carpio	Common carp	5	21	
13	Catla catla	Catla	3	21	13
14	Chela laubuca	Chalar	24		
15	Esomus danricus	-			6
16	Puntius conchonius	Khardi	44		20
17	Puntius saphore	Kharpata	26	57	35
18	Puntius dorsalis	putty	26		
19	Puntius sarana	Sikra	22	32	14
20	Puntius ticto	Kadita	38		41
21	Puntius titius	-	15		
22	Danio davario	Raiya	41		38
23	Garra gotyla	Malya	16	23	
24	Oxygaster bacaila	Chal	133	83	

25	Oxygaster gora	Chal	4		3
26	Oxygaster clupeoides	Chal	5		
27	Rasbora elanga	Darai	3		7
28	Rasbora daniconius	Darai	50	13	
29	Osteobrama cotio	Mohiya	29	14	26
30	Garra lamta	Malya			2
31	Barilius Bandelisis	Fegata	5	7	
32	Barilius barila	Fegata	5		
33	Tor tor	Badas	1		
	Family-Cobitidae				
	Lepidocephalichthys				
34	guntea	Gunguch	28		21
35	Nemacheilus botia	Gunguch	7	12	11
	Family-Notopteridae				
36	Notopterus notopterus	Patola	8	16	11
37	Notopterus Chitala	Chitala		2	
	Family-Ambassidae				
38	Chanda ranga	Kakhai	5		6
39	Chanda nama	Kakhai	22		23
	Family-Sisoridae				
40	Bagarius bagarius	Andha	1		
	Family-Gobiidae				
41	Glossogobius giuris	Gillu	13		20
	Family-				
	Mastacembelidae				
42	Mastacembelus pancalus	Bam	7		3
43	Mastacembelus armatus	Bam	5	4	4
	Family-Schlibeidae				
44	Clupisoma garua	Bekeri	28	21	
45	Eutropiichthys vacha	Vacha	5	8	
46	Silondia silonia		9	3	
	Family-Siluridae				
47	Ompok bimaculatus		21	22	26
48	Wallago attu	Padhin	4	13	3
	Family-Bagridae				
49	Mystus cavasius	kittu	10		
50	Mystus tengra	tengra	1		
51	Mystus bleekeri	Kittu	17	13	19
52	Mystus seenghala	Sighad	4	6	2
53	Mystus aor	Diger	2	4	

54	Rita rita	Gagra	2		
	Family-Clupeidae				
55	Gonialosa manmina	Baroti	5		1
56	Gudusia chapra	Chapra		5	2
	Family-Belonidae				
57	Xenentodon cancila	Suza Bam	8	10	4
	Family-Nandidae				
58	Nandus nandus	Kabri	1		
	Family-				
	Ophiocephalidae				
59	Channa marulius	Samal	1	4	
60	Channa gachua	Samal	2		4
61	Channa punctatus	Karra	2		
62	Channa striatus	Kabra	1		2
	Family-				
	Saccobranchidae				
63	Heteropneustes fossilis	Singhi	2		4
	Family-Claridae				
64	Clarias batrachus	Magur	2		
	Family-Mugilidae				
65	Rhinomugil corsula	Corsula	3	9	
	Family-Anabantidae				
66	Colisa fasciatus	Colisa			5
	Family-Cichlidae				
67	Tilapia mossambica	Tilapia	14		
			845	507	455

Figure 4. Family wise fish abundance in Betwa basin of M.P.

S.No.	Species	Local Name	Chambal River	Gandhi Sagar	Gambhir Dam	Gambhir River	Kshipra River
				Sugui	Dum		
	Family-Cyprinidae	DI I					
1	Amblypharyngodon	Dhawai	1	1		1	
$\frac{1}{2}$	mota Lahao hata	Bata	1	1	1	1	1
3	Labeo fimbriatus	Gohria	1	1	1	1	1
3	Labeo gonius	khursa	1	1			
5	Labeo gonius	Rohu	1	1	1	1	
6	Labeo hoggat	-	1	1	1	1	
7	Catla catla	Catla	1	1	1	1	1
8	Puntius conchonius	khardi	1	1	1	1	1
9	Puntius phutunio	putty	1	1	-	-	1
10	Puntius ticto	Kadita	1	1	1		1
11	Osteobrama cotio	Mohiya	1	1	-	1	1
12	Oxygaster bacaila	Chal	1	1	1	1	1
13	Oxygaster gora	Chal	1				_
14	Danio davario	Raiya	1	1	1	1	1
	Hypopthalimenthys	Silver					
15	molitrix	carp	1	1			
		Phatarchat					
16	Garra gotyla	а	1	1	1	1	
17	Rasbora daniconius	Darai	1	1	1	1	1
18	Cirrhinus mrigala	Naren	1	1	1		
	Family-Ambassidae						
19	Chanda nama	Kakhai	1	1	1	1	1
20	Chanda ranga	Kakhai	1	1	1		
	Family-Ophiocephalidae						
21	Channa marulius	Samal	1	1	1	1	1
	Family-Schlibeidae						
22	Eutropiichthys vacha	Charkhi	1	1	1	1	1
23	Clupisoma garua	Bekeri	1	1			
24	Silonia silondia	Silind	1	1	1		1
	Family-Cobitidae						
	Lepidocephalichthys	Gunguch					
25	guntea		1	1	1	1	
26	Nemacheilus botia	Gunguch	1	1			
	Family-						

Table.4. Fish diversitiy of Chambal basin in summer season

	Mastacembelidae						
27	Mastacembelus armatus	Bam	1	1	1	1	1
28	Mastacembelus pancalus	Bam	1	1			
	Family-Bagridae						
29	Mystus aor	Diger	1	1	1	1	1
30	Mystus bleekeri	Kittu	1	1	1	1	1
31	Mystus seenghala	Sighad	1	1	1		
32	Mystus tengra	-	1				
	Family-Notopteridae						
33	Notopterus notopterus	Patola	1	1	1		1
	Family-Siluridae						
34	Ompok bimaculatus	Pabda	1	1		1	1
35	Wallago attu	Padhin	1	1	1	1	1
	Family-Belonidae						
36	Xenentodon cancila	Suza	1	1	1	1	1
			36	32	23	20	19

Table.5. Fish diversitiy of Chambal basin in pre-monsoon season

S.No	Species	Local Name	Chambal River	Gandhi Sagar	Gambhir Dam	Gambhir River	Kshipra River
•							
	Family-Cyprinidae						
	Amblypharyngodon	Dhawai					
1	mola		1	1		1	
2	Labeo bata	Bata	1	1	1	1	1
3	Labeo calbasu	Kalot	1	1	1	1	
4	Labeo rohita	Rohu	1	1	1	1	
5	Catla catla	Catla	1	1	1	1	1
6	Puntius conchonius	khardi	1	1	1	1	1
7	Puntius sophore	Kharpata	1	1	1	1	1
8	Puntius ticto	Kadita	1	1	1		1
9	Osteobrama cotio	Mohiya	1	1		1	1
10	Oxygaster bacaila	Chal	1	1	1	1	1
11	Danio davario	Raiya	1	1	1	1	1

		Common					
12	Cyprinus carpio	carp	1	1	1		
		Phatarcha					
10		ta	4		-	-	
13	Garra gotyla	Doroj	1	1	1	1	
14	Rasbora daniconius	Darai	1	1	1	1	1
15	Cirrhinus mrigala	Naren	1	1	1		
	Family-Ambassidae						
16	Chanda nama	Kakhai	1	1	1	1	1
17	Chanda ranga	Kakhai	1	1	1		
	Family- Ophiocephalidae						
18	Channa marulius	Samal	1	1	1	1	1
19	Channa gachua	Samal	1				
	Family-Schlibeidae						
20	Eutropiichthys vacha	Charkhi	1	1	1	1	1
21	Clupisoma garua	Bekeri	1	1			
22	Silonia silondia	Silind	1	1	1		1
	Family- Saccobranchidae						
23	Heteropneustes fossilis	Singhi	1	1	1		1
	Family-Cobitidae						
	Lepidocephalichthys	Gunguch					
24	guntea		1	1	1	1	
	Hamily- Mastacembelidae						
25	Mastacembelus armatus	Bam	1	1	1	1	1
	Family-Bagridae						
26	Mystus aor	Diger	1	1	1	1	1
27	Mystus bleekeri	Kittu	1	1	1	1	1
28	Mystus seenghala	Sighad	1	1	1		
	Family-Notopteridae						

29	Notopterus notopterus	Patola	1	1	1		1
	Family-Siluridae						
30	Ompok bimaculatus	Pabda	1	1		1	1
31	Wallago attu	Padhin	1	1	1	1	1
			31	30	26	21	20

Table.6. Fish diversitiy of Chambal basin in post-monsoon season

S.No ·	Species	Local Name	Chambal River	Gandhi Sagar	Gambhi r Dam	Gambhi r River	Kshipra River
	Family-Cyprinidae						
1	Amblypharyngodon mola	Dhawai	1	1		1	
2	Labeo boga	Bhangan	1	1			
3	Labeo calbasu	Kalot	1	1	1	1	
4	Labeo dyocheilus	Borat	1	1			
5	Labeo fimbriatus	Gohria	1	1			
6	Labeo rohita	Rohu	1	1	1	1	
7	Labeo boggat	-	1				
8	Catla catla	Catla	1	1	1	1	1
9	Puntius sophore	Kharpata	1	1	1	1	1
10	Osteobrama cotio	Mohiya	1	1		1	1
11	Oxygaster bacaila	Chal	1	1	1	1	1
12	Oxygaster clupeoides	Chal	1				
13	Danio davario	Raiya	1	1	1	1	1
		Common					
14	Cyprinus carpio	carp	1	1	1		
15	Rasbora daniconius	Darai	1	1	1	1	1
16	Cirrhinus mrigala	Naren	1	1	1		
	Family-Ambassidae						
17	Chanda nama	Kakhai	1	1	1	1	1
18	Chanda ranga	Kakhai	1	1	1		
	Family-Ophiocephalidae						
19	Channa marulius	Samal	1	1	1	1	1
	Family-Claridae						
20	Clarius batrachus	Magur		1			1
	Family-Schlibeidae						
21	Eutropiichthys vacha	Charkhi	1	1	1	1	1
22	Clupisoma garua	Bekeri	1	1			

23	Silonia silondia	Silind	1	1	1		1
	Family-Gobiidae						
24	Glossogobius giuris	Gillu	1	1		1	
	Family-Clupeidae						
25	Gonialosa manmina	Baroti	1	1			
	Family-Cobitidae						
26	Lepidocephalichthys guntea	Gunguch	1	1	1	1	
	Family-Mastacembelidae						
27	Mastacembelus armatus	Bam	1	1	1	1	1
	Family-Bagridae						
28	Mystus aor	Diger	1	1	1	1	1
29	Mystus seenghala	Sighad	1	1	1		
30	Rita rita	Gagra	1	1			
	Family-Notopteridae						
31	Notopterus notopterus	Patola	1	1	1		1
	Family-Siluridae						
32	Ompok bimaculatus	Pabda	1	1		1	1
33	Wallago attu	Padhin	1	1	1	1	1
			32	31	20	18	16

Table.7. Fish diversitiy of Chambal basin in winter season

S.No.	Species	Local	Chambal	Gandhi	Gambhir	Gambhir	Kshipra
		Name	River	Sagar	Dam	River	River
	Family-Cyprinidae						
1	Labeo bata	Bata	1	1	1	1	1
2	Labeo calbasu	Kalot	1	1	1	1	
3	Labeo gonius	Khursa	1	1			
4	Labeo rohita	Rohu	1	1	1	1	
5	Catla catla	Catla	1	1	1	1	1
6	Puntius conchonius	khardi	1	1	1	1	1
7	Puntius sophore	Kharpata	1	1	1	1	1
8	Puntius ticto	Kadita	1	1	1		1
9	Oxygaster bacaila	Chal	1	1	1	1	1
10	Oxygaster gora	Chal	1				
11	Danio davario	Raiya	1	1	1	1	1
		Common					
12	Cyprinus carpio	carp	1	1	1		
		Phatarchata					
13	Garra gotyla		1	1	1	1	
14	Tor tor	Badas	1	1	1		

15	Cirrhinus mrigala	Naren	1	1	1		
	Family-Ambassidae						
16	Chanda ranga	Kakhai	1	1	1		
	Family- Ophiocephalidae						
17	Channa marulius	Samal	1	1	1	1	1
18	Channa striatus	Kabra	1	1	1		
	Family-Claridae						
19	Clarius batrachus	Magur		1			1
	Family-Schlibeidae						
20	Eutropiichthys vacha	Charkhi	1	1	1	1	1
21	Clupisoma garua	Bekeri	1	1			
22	Silonia silondia	Silind	1	1	1		1
	Family-Cobitidae						
23	Nemacheilus botia	Gunguch	1	1			
	Family- Mastacembelidae						
24	Mastacembelus armatus	Bam	1	1	1	1	1
	Family-Bagridae						
25	Mystus cavasius	Kittu	1	1			
26	Mystus seenghala	Sighad	1	1	1		
	Family-Notopteridae						
27	Notopterus notopterus	Patola	1	1	1		1
	Family-Siluridae						
28	Ompok bimaculatus	Pabda	1	1		1	1
29	Wallago attu	Padhin	1	1	1	1	1
	Family-Sisoridae						
30	Bagarius bagarius	Andha	1	1	1		
			29	29	23	14	15

Table.8. Over all fish diversitiy of Chambal basin during the study

S.No	Species	Local	Chamba	Gandhi	Gambhi	Gambhi	Kshipr
		Name	l River	Sagar	r Dam	r River	a River
	Family-Cyprinidae						
1	Amblypharyngodon mola	Dhawai	1	1		1	
2	Labeo bata	Bata	1	1	1	1	1
3	Labeo boga	Bhangan	1	1			
4	Labeo calbasu	Kalot	1	1	1	1	
5	Labeo dyocheilus	Borat	1	1			
6	Labeo fimbriatus	Gohria	1	1			

7	Labeo gonius	khursa	1	1			
8	Labeo rohita	Rohu	1	1	1	1	
9	Labeo boggat	-	1				
10	Catla catla	Catla	1	1	1	1	1
11	Puntius conchonius	khardi	1	1	1	1	1
12	Puntius phutunio	putty	1				
13	Puntius sophore	Kharpata	1	1	1	1	1
14	Puntius ticto	Kadita	1	1	1		1
15	Osteobrama cotio	Mohiya	1	1		1	1
16	Oxvgaster bacaila	Chal	1	1	1	1	1
17	Oxygaster gora	Chal	1				
18	Oxygaster clupeoides	Chal	1				
19	Danio davario	Raiya	1	1	1	1	1
		Common					
20	Cyprinus carpio	carp	1	1	1		
21	<i>Hypopthalimenthys</i>	Silver	1	1			
21	molitrix	Phatarch	1	1			
22	Garra gotvla	ata	1	1	1	1	
23	Rasbora daniconius	Darai	1	1	1	1	1
24	Tor tor	Badas	1	1	1		
25	Cirrhinus mrigala	Naren	1	1	1		
	Family-Ambassidae						
26	Chanda nama	Kakhai	1	1	1	1	1
27	Chanda ranga	Kakhai	1	1	1		
	Family-Ophiocephalidae			-	-		
28	Channa marulius	Samal	1	1	1	1	1
29	Channa striatus	Kabra	1	1	1		
30	Channa gachua	Samal	1	-	-		
	Family-Claridae		-				
31	Clarius batrachus	Magur		1			1
	Family-Schlibeidae			-			-
32	Eutropiichthys yacha	Charkhi	1	1	1	1	1
33	Clupisoma garua	Bekeri	1	1			
34	Silonia silondia	Silind	1	1	1		1
	Family-Gobiidae		-	-	-		-
35	Glossogobius giuris	Gillu	1	1		1	
	Family-Clupeidae		1				
36	Gonialosa manmina	Baroti	1	1			
	Family-Saccobranchidae			· ·			
37	Heteronneustes fossilis	Singhi	1	1	1		1
51	Family-Cobitidae	-	1				1
		1		1		1	

	Lepidocephalichthys	Gunguch					
38	guntea		1	1	1	1	
39	Nemacheilus botia	Gunguch	1	1			
	Family-Mastacembelidae						
40	Mastacembelus armatus	Bam	1	1	1	1	1
41	Mastacembelus pancalus	Bam	1	1			
	Family-Bagridae						
42	Mystus aor	Diger	1	1	1	1	1
43	Mystus bleekeri	Kittu	1	1	1	1	1
44	Mystus cavasius	Kittu	1	1			
45	Mystus seenghala	Sighad	1	1	1		
46	Mystus tengra	Tengra	1				
47	Rita rita	Gagra		1			
	Family-Notopteridae						
48	Notopterus notopterus	Patola	1	1	1		1
	Family-Siluridae						
49	Ompok bimaculatus	Pabda	1	1		1	1
50	Wallago attu	Padhin	1	1	1	1	1
	Family-Belonidae						
51	Xenentodon cancila	Suza	1	1	1	1	1
	Family-Sisoridae						
52	Bagarius bagarius	Andha	1	1	1		
			50	46	30	23	22

Figure 5. Fish diversity in Chambal basin of M.P.

Figure 6. Family wise species composition in Chambal basin of M.P.

Table 9. Fish abundance of Chambal basin in summer season

S.No.	Species	Local	Chambal	Gandhi	Gambhir	Gambhir	Kshipra
		Name	River	Sagar	Dam	River	River
	Family-Cyprinidae						
1	Amblypharyngodon mola	Dhawai	2	3		5	
2	Labeo bata	Bata	3	2	2	2	3
3	Labeo fimbriatus	Gohria	3	5			
4	Labeo gonius	khursa	4	3			
5	Labeo rohita	Rohu	2	4	3	1	
6	Labeo boggat	-	1				
7	Catla catla	Catla	4	2	4	3	5
8	Puntius conchonius	khardi	10	8	11	10	6
9	Puntius phutunio	putty	5				
10	Puntius ticto	Kadita	7	2	5		1
11	Osteobrama cotio	Mohiya	17	10		3	23
12	Oxygaster bacaila	Chal	16	13	18	20	25
13	Oxygaster gora	Chal	3				
14	Danio davario	Raiya	10	4	6	5	4
15	Hypopthalimenthys molitrix	Silver carp	1	1			

16	Garra gotyla	Phatarchata	12	6	7	5	
17	Rasbora daniconius	Darai	9	5	5	4	3
18	Cirrhinus mrigala	Naren	3	1	2		
	Family-Ambassidae						
19	Chanda nama	Kakhai	2	3	4	3	1
20	Chanda ranga	Kakhai	2	3	5		
	Family-Ophiocephalidae						
21	Channa marulius	Samal	2	1	1	2	1
	Family-Schlibeidae						
22	Eutropiichthys vacha	Charkhi	2	3	4	1	2
23	Clupisoma garua	Bekeri	3	2			
24	Silonia silondia	Silind	2	3	2		3
	Family-Cobitidae						
25	Lepidocephalichthys guntea	Gunguch	5	3	2	1	
26	Nemacheilus botia	Gunguch	3	2			
	Family-Mastacembelidae						
27	Mastacembelus armatus	Bam	3	2	3	2	4
28	Mastacembelus pancalus	Bam	1	3			
	Family-Bagridae						
29	Mystus aor	Diger	2	3	2	1	1
30	Mystus bleekeri	Kittu	3	5	4	2	2
31	Mystus seenghala	Sighad	3	2	1		
32	Mystus tengra	-	1				
	Family-Notopteridae						
33	Notopterus notopterus	Patola	2	1	1		1
	Family-Siluridae						
34	Ompok bimaculatus	Pabda	3	5		6	2
35	Wallago attu	Padhin	1	2	3	2	3
	Family-Belonidae						
36	Xenentodon cancila	Suza	2	3	1	1	2
			154	115	96	79	92

Table 10. Fish abundance of Chambal basin in pre-monsoon season

S.No.	Species	Local Name	Chambal	Gandhi	Gambhir	Gambhir	Kshipra
			River	Sagar	Dam	River	River
	Family-Cyprinidae						
1	Amblypharyngodon mola	Dhawai	10	2		2	
2	Labeo bata	Bata	5	6	4	3	2
3	Labeo calbasu	Kalot	7	11	6	4	
4	Labeo rohita	Rohu	5	12	3	2	
5	Catla catla	Catla	6	15	4	3	2
6	Puntius conchonius	khardi	10	8	6	9	4
----	----------------------------	----------	-----	-----	-----	----	-----
7	Puntius sophore	Kharpata	9	5	10	6	5
8	Puntius ticto	Kadita	15	6	3		14
9	Osteobrama cotio	Mohiya	25	7		2	10
10	Oxygaster bacaila	Chal	50	10	19	10	15
11	Danio davario	Raiya	20	5	12	10	7
		Common					
12	Cyprinus carpio	Carp	3	6	3		
13	Garra gotyla	Darai	15	12	2	2	
14	Rasbora daniconius	Darai	11	13	3	3	12
15	Cirrhinus mrigala	Naren	3	4	2		
	Family-Ambassidae						
16	Chanda nama	Kakhai	5	12	4	6	10
17	Chanda ranga	Kakhai	3	6	5		
	Family-Ophiocephalidae						
18	Channa marulius	Samal	1	2	1	2	1
19	Channa gachua	Samal	1				
	Family-Schlibeidae						
20	Eutropiichthys vacha	Charkhi	3	2	3	2	5
21	Clupisoma garua	Bekeri	2	5			
22	Silonia silondia	Silind	2	3	2		3
	Family-Saccobranchidae						
23	Heteropneustes fossilis	Singhi	1	1	2		1
	Family-Cobitidae						
24	Lepidocephalichthys guntea	Gunguch	10	5	6	2	
	Family-Mastacembelidae						
25	Mastacembelus armatus	Bam	2	2	1	1	2
	Family-Bagridae						
26	Mystus aor	Diger	1	10	2	2	2
27	Mystus bleekeri	Kittu	2	3	3	1	3
28	Mystus seenghala	Sighad	3	15	1		
	Family-Notopteridae						
29	Notopterus notopterus	Patola	2	6	3		2
	Family-Siluridae						
30	Ompok bimaculatus	Pabda	4	3		5	3
31	Wallago attu	Padhin	3	2	2	2	1
			239	199	112	79	104

S.No.	Species	Local Name	Chambal River	Gandhi Sagar	Gambhir	Gambhir River	Kshipra River
			River	Sagai	Dam	Kivei	Kivei
1	Family-Cyprinidae	Dhawai	2	2		4	
1	Amblypnaryngodon mola	Bhangan	3	2		4	
2	Labeo boga	Kalot	1 7	3	2	~	
3	Labeo calbasu	Borat	5	12	3	5	
4	Labeo dyocheilus	Gobria	3	3			
5	Labeo fimbriatus	Pohu	3	1			
6	Labeo rohita	Kollu	2	15	3	2	
7	Labeo boggat	- Catla	2				
8	Catla catla	Catla	5	11	2	1	4
9	Puntius sophore	Kharpata	10	4	3	2	5
10	Osteobrama cotio	Mohiya	20	5		7	2
11	Oxygaster bacaila	Chal	25	10	15	3	3
12	Oxygaster clupeoides	Chal	5				
13	Danio devario	Raiya	15	15	11	10	8
1.4		Common	2	2	2		
14	Cyprinus carpio	carp Darai	3	2	3	10	2
15	Rasbora daniconius	Naran	12	3	12	12	3
16	Cirrhinus mrigala	Ivaren	3	2	3		
	Family-Ambassidae	Kalaha:					
17	Chanda nama	Kakhai	5	3	5	4	2
18	Chanda ranga	Kakhai	4	2	4		
	Family-Ophiocephalidae						
19	Channa marulius	Samal	1	5	2	1	2
	Family-Claridae						
20	Clarias batrachus	Magur		1			1
	Family-Schlibeidae						
21	Eutropiichthys vacha	Charkhi	5	6	3	2	3
22	Clupisoma garua	Bekeri	6	2			
23	Silonia silondia	Silind	2	3	2		2
	Family-Gobiidae						
24	Glossogobius giuris	Gillu	2	5		4	
	Family-Clupeidae						
25	Gonialosa manmina	Baroti	3	2			
	Family-Cobitidae						
26	Lenidocenhalichthys guntea	Gunguch	4	2	4	3	
	Family-Mastacembelidae	-		2	-7	5	
27	Mastacombolus armatus	Bam	3	3	1	2	3
21	Eamily Doarid-		5	5	1	2	5
	ramny-Bagridae	Diger	2	2	2	2	1
- 28	Mystus aor	Digoi	2	2	2	2	1

Table 11. Fish abundance of Chambal basin in post-monsoon season

29	Mystus seenghala	Sighad	2	1	1		
30	Rita rita	Gagra	1	3			
	Family-Notopteridae						
31	Notopterus notopterus	Patola	4	2	1		6
	Family-Siluridae						
32	Ompok bimaculatus	Pabda	5	3		1	2
33	Wallago attu	Padhin	2	1	1	2	5
			168	134	81	67	52

Table 12. Fish abundance of Chambal basin in winter season

S.No.	Species	Local Name	Chambal River	Gandhi Sagar	Gambhir Dam	Gambhir River	Kshipra River
	Family-Cyprinidae						
1	Labeo bata	Bata	2	3	2	4	3
2	Labeo calbasu	Kalot	3	4	3	2	
3	Labeo gonius	Khursa	5	2			
4	Labeo rohita	Rohu	2	3	2	6	
5	Catla catla	Catla	6	2	3	2	2
6	Puntius conchonius	Khardi	3	12	6	7	3
7	Puntius sophore	Kharpata	9	8	4	6	4
8	Puntius ticto	Kadita	11	6	2		3
9	Oxygaster bacaila	Chal	13	8	1	15	2
10	Oxygaster gora	Chal	2				
11	Danio davario	Raiya	5	10	6	12	4
12	Cyprinus carpio	Common carp	3	3	4		
13	Garra gotyla	Phatarchata	12	8	5	3	
14	Tor tor	Badas	2	1	3		
15	Cirrhinus mrigala	Naren	2	3	2		
	Family-Ambassidae						
16	Chanda ranga	Kakhai	3	2	4		
	Family- Ophiocephalidae						
17	Channa marulius	Samal	2	2	3	2	1
18	Channa striatus	Kabra	3	3	4		
	Family-Claridae						
19	Clarius batrachus	Magur		1			1
	Family-Schlibeidae						
20	Eutropiichthys vacha	Charkhi	2	3	2	3	2
21	Clupisoma garua	Bekeri	3	2			
22	Silonia silondia	Silind	4	4	4		4
	Family-Cobitidae						

23	Nemacheilus botia	Gunguch	5	3			
	Family-						
	Mastacembelidae						
	Mastacembelus	Bam					
24	armatus		2	2	3	1	2
	Family-Bagridae						
25	Mystus cavasius	Kittu	3	4			
26	Mystus seenghala	Sighad	2	3	3		
	Family-Notopteridae						
27	Notopterus notopterus	Patola	2	3	4		3
	Family-Siluridae						
28	Ompok bimaculatus	Pabda	3	3		2	1
29	Wallago attu	Padhin	2	2	3	4	1
	Family-Sisoridae						
30	Bagarius bagarius	Andha	1	1	1		
			117	111	74	69	36

Table 13. Overall fish abundance of Chambal basin in winter season

S.No.	Species	Local Name	Chambal	Gandhi	Gambhir	Gambhir	Kshipra
			River	Sagar	Dam	River	River
	Family-Cyprinidae						
1	Amblypharyngodon mola	Dhawai	15	7		11	
2	Labeo bata	Bata	10	11	6	9	8
3	Labeo boga	Bhangan	1	3	2		
4	Labeo calbasu	Kalot	15	27	12	11	
5	Labeo dyocheilus	Borat	3	3			
6	Labeo fimbriatus	Gohria	6	6			
7	Labeo gonius	khursa	9	5			
8	Labeo rohita	Rohu	11	34	11	11	
9	Labeo boggat	-	3				
10	Catla catla	Catla	21	30	13	9	13
11	Puntius conchonius	khardi	23	28	23	26	13
12	Puntius phutunio	putty	5				
13	Puntius sophore	Kharpata	28	17	17	14	14
14	Puntius ticto	Kadita	33	14	10		18
15	Osteobrama cotio	Mohiya	62	22		12	37
16	Oxygaster bacaila	Chal	104	41	53	48	43
17	Oxygaster gora	Chal	5				
18	Oxygaster clupeoides	Chal	5				
19	Danio davario	Raiya	50	34	35	37	23
20	Convinus camio	Common	0	11	10		
20	Cyprinus curpio	carp	7	11	10		

21	Hypopthalimenthys molitrix	Silver carp	1	1			
22	Garra gotyla	Phatarchata	39	26	14	10	
23	Rasbora daniconius	Darai	32	21	20	19	18
24	Tor tor	Badas	2	1	3		
25	Cirrhinus mrigala	Naren	11	10	9		
	Family-Ambassidae						
26	Chanda nama	Kakhai	12	18	13	13	13
27	Chanda ranga	Kakhai	12	13	18		
	Family-Ophiocephalidae				-		
28	Channa marulius	Samal	6	10	7	7	5
29	Channa striatus	Kabra	4	3	4		
30	Channa gachua	Samal	1				
	Family-Claridae						
31	Clarius batrachus	Magur		2			2
	Family-Schlibeidae						
32	Eutropiichthys vacha	Charkhi	12	14	12	8	12
33	Clupisoma garua	Bekeri	14	11			
34	Silonia silondia	Silind	10	13	10		12
	Family-Gobiidae						
35	Glossogobius giuris	Gillu	2	5		4	
	Family-Clupeidae						
36	Gonialosa manmina	Baroti	3	2			
	Family-Saccobranchidae						
37	Heteropneustes fossilis	Singhi	1	1	2		1
	Family-Cobitidae						
38	Lepidocephalichthys guntea	Gunguch	19	10	12	6	
39	Nemacheilus botia	Gunguch	8	5			
	Family-Mastacembelidae		-				
40	Mastacembelus armatus	Bam	10	9	8	6	11
41	Mastacembelus pancalus	Bam	1	3	-		
	Family-Bagridae						
42	Mystus aor	Diger	5	15	6	5	4
43	Mystus bleekeri	Kittu	5	8	7	3	5
44	Mystus cavasius	Kittu	3	4			
45	Mystus seenghala	Sighad	10	21	6		
46	Mystus tengra	Tengra	1				
47	Rita rita	Gagra	1	3			
	Family-Notopteridae						
48	Notopterus notopterus	Patola	10	12	9		12
	Family-Siluridae						
49	Ompok bimaculatus	Pabda	15	14		14	8

50	Wallago attu	Padhin	8	7	9	10	10
	Family-Belonidae						
51	Xenentodon cancila	Suza	2	3	1	1	2
	Family-Sisoridae						
52	Bagarius bagarius	Andha	1	1	1		
			679	559	363	294	284

Figure 7. Fish abundance in Chambal basin of M.P.

Figure 8. Family wise fish abundance in Chambal basin of M.P.

		Common	Tanti	Ken	Son Basin		
S. No	Species	Name	River	River	Govindgarh	Bansagar	Rajgarh
	Family-Cyprinidae						
1	Amblypharogodon mola	Dhawai	1	1		1	1
2	Labeo Bata	Bata	1	1	1	1	1
3	Labeo rohita	Rohu	1	1	1	1	1
4	Labeo calbasu	Kalot	1	1		1	1
5	Labeo angra	water	1				1
6	Cirrhinus mrigala	Naren	1	1	1	1	1
7	Crossocheilus latius	_	1				
8	Catla catla	Catla	1	1	1	1	1
9	Puntius conchonius	Khardi	1	1	1	1	1
10	Puntius saphore	Kharpata	1	1		1	1
11	Puntius ticto	Kadita	1	1	1	1	1
12	Garra gotyla	Malya	1	1	1	1	1
13	Oxygaster bacaila	Chal	1	1	1	1	1
14	Oxygaster clupeoides	Chal	1				
15	Rasbora daniconius	Darai	1	1	1	1	1
16	Barilius barila	Fegata	1				1
	Family-Cobitidae						
17	Lepidocephalichthys			1	1	1	
17	guntea	Gunguch	1	1	1	I	
10	Family-Notopteridae						
18	Notopterus notopterus	Patola	1	1	1	1	
	Family-Gobiidae						
19	Glossogobius giuris	Gillu	1	1	1	1	
	Mastacembelidae						
20	Mastacembelus armatus	Bam	1	1	1	1	1
	Family-Schlibeidae						
21	Clupisoma garua	Bekeri	1	1		1	1
	Family-Siluridae						
22	Ompok bimaculatus	Pabda	1	1	1	1	1
23	Wallago attu	Padhin	1	1	1	1	1
	Family-Bagridae						
24	Mystus cavasius	kittu	1	1	1	1	1
25	Mystus bleekeri	Kittu	1	1		1	1
26	Mystus seenghala	Sighad	1	1	1	1	1
	Family-Belonidae						
27	Xenentodon cancila	Suza Bam	1	1	1	1	

Table.14. Fish diversity of Tapti and others basin in summer season

	Family- Ophiocephalidae						
28	Channa marulius	Samal	1	1		1	1
29	Channa striatus	Kabra	1	1		1	1
	Family-Cichlidae						
30	Tilapia mossambica	Tilapia	1				1
	Family-Mugilidae						
31	Rhinomugil corsula	Corsula	1				
			31	25	18	25	24

Table.15. Fish diversity of Tapti and others basin in pre-monsoon season

		Common	Tanti	Ken	Son E	Basin	
S. No	Species	Name	River	River	Govindgarh	Bansagar	Rajgarh
	Family-Cyprinidae						
1	Amblypharogodon mola	Dhawai	1	1		1	1
2	Labeo Bata	Bata	1	1	1	1	1
3	Labeo boga	Bhangan		1			
4	Labeo calbasu	Kalot	1	1		1	1
5	Labeo dero	Dudiya		1			1
6	Cirrhinus mrigala	Naren	1	1	1	1	1
7	Cyprinus carpio	Common carp	1		1	1	1
8	Catla catla	Catla	1	1	1	1	1
9	Puntius conchonius	Khardi	1	1	1	1	1
10	Puntius sarana	Sikra	1	1		1	1
11	Puntius chola	Putty				1	
12	Garra gotyla	Malya	1	1	1	1	1
13	Oxygaster bacaila	Chal	1	1	1	1	1
14	Rasbora daniconius	Darai	1	1	1	1	1
15	Osteobrama cotio	Mohiya	1	1		1	1
16	Barilius Bandelisis	Fegata	1			1	1
17	Tor tor	Barus	1	1	1	1	
	Family-Cobitidae						
18	Lepidocephalichthys guntea	Gunguch	1	1	1	1	
19	Nemacheilus botia	Gunguch	1	1		1	
	Family-Notopteridae						
20	Notopterus notopterus	Patola	1	1	1	1	
21	Notopterus Chitala	Chitala				1	
	Family-Ambassidae						
22	Chanda ranga	Kakhai	1	1	1	1	1
23	Chanda nama	Kakhai	1	1		1	1

	Family- Mastacembelidae						
24	Mastacembelus pancalus	Bam	1	1			1
	Family-Schlibeidae						
25	Eutropiichthys vacha	Vacha	1				
26	Silondia silonia	Silind	1				
	Family-Siluridae						
27	Ompok bimaculatus	Pabda	1	1	1	1	1
28	Wallago attu	Padhin	1	1	1	1	1
	Family-Bagridae						
29	Mystus tengra	tengra	1				
30	Mystus seenghala	Sighad	1	1	1	1	1
31	Mystus aor	Diger	1	1	1		1
	Family- Ophiocephalidae						
32	Channa gachua	Samal	1	1		1	1
33	Channa striatus	Kabra	1	1		1	1
	Family- Saccobranchidae						
34	Heteropneustes fossilis	Singhi		1	1	1	1
	Family-Cichlidae						
35	Tilapia mossambica	Tilapia	1				1
	Family-Anabantidae						
36	Badis badis	-				1	
			30	27	17	28	25

Table.16. Fish diversity of Tapti and others basin in post-monsoon season

		Common	Tanti	Ken	Son B	asin	
S. No	Species	Name	River	River	Govindgarh	Bansagar	Rajgarh
	Family-Cyprinidae						
1	Hypopthalimenthys molitrix	Silver carp	1			1	
2	Labeo gonius	Khursa	1	1		1	
3	Labeo rohita	Rohu	1	1	1	1	1
4	Labeo calbasu	Kalot	1	1		1	1
5	Labeo angra	water	1				1
6	Labeo fimbriatus	-	1				1
7	Labeo dyocheilus	Borat	1				
8	Catla catla	Catla	1	1	1	1	1
9	Puntius saphore	Kharpata	1	1		1	1
10	Puntius sarana	Sikra	1	1		1	1
11	Danio davario	Raiya	1	1			

12	Garra gotyla	Malya	1	1	1	1	1
13	Oxygaster bacaila	Chal	1	1	1	1	1
14	Oxygaster gora	Chal	1				1
15	Rasbora daniconius	Darai	1	1	1	1	1
16	Barilius Bandelisis	Fegata	1			1	1
17	Tor tor	Barus	1	1	1	1	
	Family-Cobitidae						
18	Nemacheilus duyi	Gunguch	1				
19	Nemacheilus evezardi	Gunguch	1				
	Family-Notopteridae						
20	Notopterus notopterus	Patola	1	1	1	1	
	Family-Ambassidae						
21	Chanda nama	Kakhai	1	1		1	1
	Family-Sisoridae						
22	Bagarius bagarius	Andha	1				
	Family-Gobiidae						
	Family-Mastacembelidae						
23	Mastacembelus armatus	Bam	1	1	1	1	1
	Family-Schlibeidae						
24	Clupisoma garua	Bekeri	1	1		1	1
25	Eutropiichthys vacha	Vacha	1				
	Family-Siluridae						
26	Ompok bimaculatus	Pabda	1	1	1	1	1
	Family-Bagridae						
27	Mystus cavasius	kittu	1	1	1	1	1
28	Mystus seenghala	Sighad	1	1	1	1	1
29	Rita rita	Gagra		1			
	Family-Belonidae						
30	Xenentodon cancila	Suza Bam	1	1	1	1	
	Family-Nandidae						
31	Nandus nandus	Kabri		1		1	1
	Family-Ophiocephalidae						
32	Channa marulius	Samal	1	1		1	1
33	Channa punctatus	Karra	1				
	Family-Saccobranchidae						
34	Heteropneustes fossilis	Singhi		1	1	1	1
	Family-Claridae						
35	Clarias batrachus	Magur	1	1	1		
			32	24	14	23	21

S.		Common Tapti Ken Son Basin					
No	Species	Name	River	River	Govindgarh	Bansagar	Rajgarh
	Family-Cyprinidae						
1	Amblypharogodon mola	Dhawai	1	1		1	1
2	Labeo Bata	Bata	1	1	1	1	1
3	Labeo gonius	Khursa	1	1		1	
4	Labeo rohita	Rohu	1	1	1	1	1
5	Labeo calbasu	Kalot	1	1		1	1
6	Labeo fimbriatus	-	1				1
7	Cirrhinus mrigala	Naren	1	1	1	1	1
8	Cyprinus carpio	Common carp	1		1	1	1
9	Catla catla	Catla	1	1	1	1	1
10	Chela laubuca	Chelar	1	1		1	1
11	Puntius conchonius	Khardi	1	1	1	1	1
12	Puntius sarana	Sikra	1	1		1	1
13	Puntius ticto	Kadita	1	1	1	1	1
14	Danio davario	Raiya	1	1			
15	Garra gotyla	Malya	1	1	1	1	1
16	Oxygaster bacaila	Chal	1	1	1	1	1
17	Rasbora daniconius	Darai	1	1	1	1	1
18	Osteobrama cotio	Mohiya	1	1		1	1
	Family-Cobitidae						
19	Lepidocephalichthys guntea	Gunguch	1	1	1	1	
20	Nemacheilus evezardi	Gunguch	1				
	Family-Notopteridae						
21	Notopterus notopterus	Patola	1	1	1	1	
	Family-Ambassidae						
22	Chanda nama	Kakhai	1	1		1	1
	Family-Gobiidae						
23	Glossogobius giuris	Gillu	1	1	1	1	
	Family-Mastacembelidae						
24	Mastacembelus armatus	Bam	1	1	1	1	1
	Family-Schlibeidae						
25	Clupisoma garua	Bekeri	1	1		1	1
	Family-Siluridae						
26	Ompok bimaculatus	Pabda	1	1	1	1	1
27	Wallago attu	Padhin	1	1	1	1	1
	Family-Bagridae						
28	Mystus cavasius	kittu	1	1	1	1	1

Table 17. Fish diversity of Tapti and others basin in winter season

29	Mystus bleekeri	Kittu	1	1		1	1
	Family-Ophiocephalidae						
30	Channa marulius	Samal	1	1		1	1
31	Channa gachua	Samal	1	1		1	1
	Family-Cichlidae						
32	Tilapia mossambica	Tilapia	1				1
			32	28	17	28	26

Table 18. Overall fish diversity of Tapti and others basin during the study

		Common	Tanti	Ken	Son Ba	asin	
S. No	Species	Name	basin	basin	Govindgarh	Bansagar	Rajgarh
	Family-Cyprinidae						
1	Amblypharogodon mola	Dhawai	1	1		1	1
	Hypopthalimenthys	<u></u>					
2	molitrix	Silver carp	1			1	
3	Labeo Bata	Bata	1	1	1	1	1
4	Labeo gonius	Khursa	1	1		1	
5	Labeo boga	Bhangan		1			
6	Labeo rohita	Rohu	1	1	1	1	1
7	Labeo calbasu	Kalot	1	1		1	1
8	Labeo dero	Dudiya		1			1
9	Labeo angra	water	1				1
10	Labeo fimbriatus	-	1				1
11	Labeo dyocheilus	Borat	1				
12	Cirrhinus mrigala	Naren	1	1	1	1	1
		Common					
13	Cyprinus carpio	carp	1		1	1	1
14	Crossocheilus latius	-	1				
15	Catla catla	Catla	1	1	1	1	1
16	Chela laubuca	Chelar	1	1		1	1
17	Puntius conchonius	Khardi	1	1	1	1	1
18	Puntius saphore	Kharpata	1	1		1	1
19	Puntius sarana	Sikra	1	1		1	1
20	Puntius ticto	Kadita	1	1	1	1	1
21	Puntius chola	putty				1	
22	Danio davario	Raiya	1	1			
23	Garra gotyla	Malya	1	1	1	1	1
24	Oxygaster bacaila	Chal	1	1	1	1	1
25	Oxygaster gora	Chal	1				1
26	Oxygaster clupeoides	Chal	1				
27	Rasbora daniconius	Darai	1	1	1	1	1

28	Osteobrama cotio	Mohiya	1	1		1	1
29	Barilius Bandelisis	Fegata	1			1	1
30	Barilius barila	Fegata	1				1
31	Tor tor	Barus	1	1	1	1	
	Family-Cobitidae						
	Lepidocephalichthys	_					
32	guntea	Gunguch	1	1	1	1	
33	Nemacheilus botia	Gunguch	1	1			
34	Nemacheilus duyi	Gunguch	1				
35	Nemacheilus evezardi	Gunguch	1				
	Family-Notopteridae						
36	Notopterus notopterus	Patola	1	1	1	1	
37	Notopterus Chitala	Chitala					
	Family-Ambassidae						
38	Chanda ranga	Kakhai	1	1	1	1	1
39	Chanda nama	Kakhai	1	1		1	1
	Family-Sisoridae						
40	Bagarius bagarius	Andha	1				
	Family-Gobiidae						
41	Glossogobius giuris	Gillu	1	1	1	1	
	Family- Mastacembelidae						
42	Mastacembelus pancalus	Bam	1	1			1
43	Mastacembelus armatus	Bam	1	1	1	1	1
	Family-Schlibeidae						
44	Clupisoma garua	Bekeri	1	1		1	1
45	Eutropiichthys vacha	Vacha	1				
46	Silondia silonia	Silind	1				
	Family-Siluridae						
47	Ompok bimaculatus	Pabda	1	1	1	1	1
48	Wallago attu	Padhin	1	1	1	1	1
	Family-Bagridae						
49	Mystus cavasius	kittu	1	1	1	1	1
50	Mystus tengra	tengra	1				
51	Mystus bleekeri	Kittu	1	1		1	1
52	Mystus seenghala	Sighad	1	1	1	1	1
53	Mystus aor	Diger	1	1	1		1
54	Rita rita	Gagra		1			
	Family-Belonidae						
55	Xenentodon cancila	Suza Bam	1	1	1	1	
	Family-Nandidae						
56	Nandus nandus	Kabri		1		1	1
	Family-Ophiocephalidae						

57	Channa marulius	Samal	1	1		1	1
58	Channa gachua	Samal	1	1		1	1
59	Channa punctatus	Karra	1				
60	Channa striatus	Kabra	1	1		1	1
	Family-Saccobranchidae						
61	Heteropneustes fossilis	Singhi		1	1	1	1
	Family-Claridae						
62	Clarias batrachus	Magur	1	1	1		
	Family-Cichlidae						
63	Tilapia mossambica	Tilapia	1				1
	Family-Anabantidae						
64	Badis badis	-				1	
	Family-Mugilidae						
65	Rhinomugil corsula	Corsula	1				
			57	43	24	42	39

Figure 9. Fish diversity in Tapti and others basin of M.P.

Figure 10. Family wise composition in Tapti and others basin of M.P.

		Common	Tanti	Ken	Son B	asin	
S. No	Species	Name	River	River	Govindgarh	Bansagar	Rajgarh
	Family-Cyprinidae						
1	Amblypharogodon mola	Dhawai	2	1		3	5
2	Labeo Bata	Bata	3	1	2	2	3
3	Labeo rohita	Rohu	1	2	3	5	2
4	Labeo calbasu	Kalot	3	1		3	3
5	Labeo angra	water	1				1
6	Cirrhinus mrigala	Naren	3	2	2	1	1
7	Crossocheilus latius	-	3				
8	Catla catla	Catla	2	2	2	3	1
9	Puntius conchonius	Khardi	10	3	13	2	10
10	Puntius saphore	Kharpata	11	1		6	2
11	Puntius ticto	Kadita	15	10	6	3	15
12	Garra gotyla	Malya	16	6	3	2	7
13	Oxygaster bacaila	Chal	25	10	7	12	6
14	Oxygaster clupeoides	Chal	3				
15	Rasbora daniconius	Darai	5	2	5	4	2
16	Barilius barila	Fegata	1				1
	Family-Cobitidae						

17	Lepidocephalichthys guntea	Gunguch	5	3	3	3	
	Family-Notopteridae						
18	Notopterus notopterus	Patola	3	1	2	1	
	Family-Gobiidae						
19	Glossogobius giuris	Gillu	3	2	1	3	
	Family- Mastacembelidae						
20	Mastacembelus armatus	Bam	2	3	1	2	3
	Family-Schlibeidae						
21	Clupisoma garua	Bekeri	4	2		3	2
	Family-Siluridae						
22	Ompok bimaculatus	Pabda	3	1	6	5	3
23	Wallago attu	Padhin	2	2	3	2	2
	Family-Bagridae						
24	Mystus cavasius	kittu	2	3	2	3	3
25	Mystus bleekeri	Kittu	2	2		2	4
26	Mystus seenghala	Sighad	1	1	3	1	2
	Family-Belonidae						
27	Xenentodon cancila	Suza Bam	3	2	1	2	
	Family- Ophiocephalidae						
28	Channa marulius	Samal	1	2		1	1
29	Channa striatus	Kabra	2	1		1	1
	Family-Cichlidae						
30	Tilapia mossambica	Tilapia	3				4
	Family-Mugilidae						
31	Rhinomugil corsula	Corsula	2				
			142	66	65	75	84

Table 20. Fish abundance of Tapti and others basin in pre monsoon season

		Common	Tanti	Ken	Son Basin		
S. No	Species	Name	River	River	Govindgarh	Bansagar	Rajgarh
	Family-Cyprinidae						
	Amblypharogodon						
1	mola	Dhawai	3	2		2	4
2	Labeo Bata	Bata	2	4	2	3	1
3	Labeo boga	Bhangan		1			
4	Labeo calbasu	Kalot	6	3		3	2
5	Labeo dero	Dudiya		2			3
6	Cirrhinus mrigala	Naren	2	1	3	4	2
		Common					
7	Cyprinus carpio	carp	2		3	2	1

I	1		1	1		1	1
8	Catla catla	Catla	3	3	2	3	2
9	Puntius conchonius	Khardi	13	20	10	5	2
10	Puntius sarana	Sikra	3	5		6	2
11	Puntius chola	Putty				3	
12	Garra gotyla	Malya	5	2	11	5	2
13	Oxygaster bacaila	Chal	15	22	25	10	17
14	Rasbora daniconius	Darai	11	3	9	7	23
15	Osteobrama cotio	Mohiya	10	3		6	3
16	Barilius Bandelisis	Fegata	3			3	3
17	Tor tor	Barus	3	2	1	1	
	Family-Cobitidae						
	Lepidocephalichthys						
18	guntea	Gunguch	6	3	6	2	
19	Nemacheilus botia	Gunguch	3	2		3	
	Family-Notopteridae						
20	Notopterus notopterus	Patola	2	1	2	2	
21	Notopterus Chitala	Chitala				1	
	Family-Ambassidae						
22	Chanda ranga	Kakhai	4	2	2	2	3
23	Chanda nama	Kakhai	5	3		1	6
	Family-						
	Mastacembelidae						
24	pancalus	Bam	3	1			2
	Family-Schlibeidae						
25	Eutropiichthys vacha	Vacha	2				
26	Silondia silonia	Silind	1				
	Family-Siluridae						
27	Ompok bimaculatus	Pabda	3	2	3	4	3
28	Wallago attu	Padhin	2	1	2	3	6
	Family-Bagridae						
29	Mystus tengra	tengra	1				
30	Mystus seenghala	Sighad	2	1	2	3	4
31	Mystus aor	Diger	2	2	1		2
	Family-						
	Ophiocephalidae						
32	Channa gachua	Samal	2	1		2	1
33	Channa striatus	Kabra	1	2		1	1
	Family- Saccobranchidae						
3/1	Heteropheustes fossilis	Singhi		1	2	1	1
54	Family-Cichlidge	Singin		1	2	1	1
35	Tilania mossambica	Tilania	20				3
55	Fomily Anabantid	паріа	20				3
	ranny-Anabanudae		1				l

36	Badis badis	-				3	
			141	95	86	91	99

Table 21. Fish abundance of Tapti and others basin in post monsoon season

S.		Common	Tanti	Ken	Son B	asin	
No	Species	Name	River	River	Govindgarh	Bansagar	Rajgarh
	Family-Cyprinidae						
1	Hypopthalimenthys molitrix	Silver carp	1			1	
2	Labeo gonius	Khursa	2	3		4	
3	Labeo rohita	Rohu	3	2	2	6	3
4	Labeo calbasu	Kalot	3	3		3	4
5	Labeo angra	water	3				2
6	Labeo fimbriatus	-	2				3
7	Labeo dyocheilus	Borat	2				
8	Catla catla	Catla	2	3	4	3	4
9	Puntius saphore	Kharpata	6	2		6	2
10	Puntius sarana	Sikra	3	3		2	3
11	Danio davario	Raiya	5	3			
12	Garra gotyla	Malya	6	2	5	3	4
13	Oxygaster bacaila	Chal	20	8	10	2	3
14	Oxygaster gora	Chal	2				2
15	Rasbora daniconius	Darai	7	3	6	4	3
16	Barilius Bandelisis	Fegata	2			2	2
17	Tor tor	Barus	3	2	1	1	
	Family-Cobitidae						
18	Nemacheilus dayi	Gunguch	6				
19	Nemacheilus evezardi	Gunguch	4				
	Family-Notopteridae						
20	Notopterus notopterus	Patola	2	2	3	2	
	Family-Ambassidae						
21	Chanda nama	Kakhai	6	3		7	5
	Family-Sisoridae						
22	Bagarius bagarius	Andha	3				
	Family-Gobiidae						
	Family-Mastacembelidae						
23	Mastacembelus armatus	Bam	2	2	1	2	3
	Family-Schlibeidae						
24	Clupisoma garua	Bekeri	3	4		4	5
25	Eutropiichthys vacha	Vacha	2				
	Family-Siluridae						
26	Ompok bimaculatus	Pabda	2	3	2	3	2

	Family-Bagridae						
27	Mystus cavasius	Kittu	2	3	3	2	1
28	Mystus seenghala	Sighad	3	2	1	2	3
29	Rita rita	Gagra		1			
	Family-Belonidae						
30	Xenentodon cancila	Suza Bam	2	3	1	2	
	Family-Nandidae						
31	Nandus nandus	Kabri		2		1	3
	Family-Ophiocephalidae						
32	Channa marulius	Samal	1	2		1	1
33	Channa punctatus	Karra	2				
	Family-Saccobranchidae						
34	Heteropneustes fossilis	Singhi		2	3	1	2
	Family-Claridae						
35	Clarias batrachus	Magur	2	1	1		
			115	64	43	64	60

Table 22. Fish abundance of Tapti and others basin in winter season

S.		Common			Son B	asin	
No	Species	Name	Tapti	Ken	Govindgarh	Bansagar	Rajgarh
	Family-Cyprinidae						
1	Amblypharogodon mola	Dhawai	6	2		2	6
2	Labeo Bata	Bata	2	1	2	3	4
3	Labeo gonius	Khursa	3	2		1	
4	Labeo rohita	Rohu	1	2	3	2	3
5	Labeo calbasu	Kalot	4	3		4	4
6	Labeo fimbriatus	-	2				2
7	Cirrhinus mrigala	Naren	1	2	3	2	3
8	Cyprinus carpio	Common carp	3		4	3	10
9	Catla catla	Catla	2	3	2	2	15
10	Chela laubuca	Chelar	3	4		3	3
11	Puntius conchonius	Khardi	11	3	9	6	10
12	Puntius sarana	Sikra	5	2		2	5
13	Puntius ticto	Kadita	13	9	7	9	14
14	Danio davario	Raiya	10	5			
15	Garra gotyla	Malya	8	4	5	7	6
16	Oxygaster bacaila	Chal	18	10	6	8	15
17	Rasbora daniconius	Darai	6	5	4	2	6
18	Osteobrama cotio	Mohiya	7	4		4	3
	Family-Cobitidae						

19	Lepidocephalichthys guntea	Gunguch	3	6	5	4	
20	Nemacheilus evezardi	Gunguch	2				
	Family-Notopteridae						
21	Notopterus notopterus	Patola	3	1	2	3	
	Family-Ambassidae						
22	Chanda nama	Kakhai	3	2		6	5
	Family-Gobiidae						
23	Glossogobius giuris	Gillu	2	3	1	4	
	Family-Mastacembelidae						
24	Mastacembelus armatus	Bam	2	2	1	3	3
	Family-Schlibeidae						
25	Clupisoma garua	Bekeri	3	4		2	6
	Family-Siluridae						
26	Ompok bimaculatus	Pabda	4	2	6	3	4
27	Wallago attu	Padhin	3	2	1	2	5
	Family-Bagridae						
28	Mystus cavasius	kittu	3	2	1	2	5
29	Mystus bleekeri	Kittu	4	3	5	4	4
	Family-Ophiocephalidae						
30	Channa marulius	Samal	1	2		1	2
31	Channa gachua	Samal	2	1		1	3
	Family-Cichlidae						
32	Tilapia mossambica	Tilapia	12				4
			152	91	67	95	150

Table 23. Overall fish abundance of Tapti and others basin during the study

		Common	Tanti	Ken	Son B	asin	
S. No	Species	Name	River	River	Govindgarh	Bansagar	Rajgarh
	Family-Cyprinidae						
1	Amblypharogodon mola	Dhawai	12	5		7	15
2	Hypopthalimenthys molitrix	Silver carp				1	
3	Labeo Bata	Bata	7	6	6	8	8
4	Labeo gonius	Khursa	5	5		5	
5	Labeo boga	Bhangan		1			
6	Labeo rohita	Rohu	5	6	8	13	8
7	Labeo calbasu	Kalot	16	10		13	13
8	Labeo dero	Dudiya		2			3
9	Labeo angra	water	4				3
10	Labeo fimbriatus	-	4				5
11	Labeo dyocheilus	Borat	2				

12	Cirrhinus mrigala	Naren	6	5	8	7	6
13	Cyprinus carpio	Common	5		7	5	11
14	Crossocheilus latius	-	3		1	5	11
15	Catla catla	Catla	9	11	10	11	22
16	Chela laubuca	Chelar	3	4		3	3
17	Puntius conchonius	Khardi	34	26	32	13	22
18	Puntius saphore	Kharpata	17	3		12	4
19	Puntius sarana	Sikra	11	10		10	10
20	Puntius ticto	Kadita	28	19	13	12	29
21	Puntius chola	Putty				3	
22	Danio davario	Raiya	15	8			
23	Garra gotyla	Malya	35	14	24	17	19
24	Oxygaster bacaila	Chal	78	50	48	32	41
25	Oxygaster gora	Chal	2				2
26	Oxygaster clupeoides	Chal	3				
27	Rasbora daniconius	Darai	29	13	24	17	34
28	Osteobrama cotio	Mohiya	17	7		10	6
29	Barilius Bandelisis	Fegata	5			5	5
30	Barilius barila	Fegata	1				1
31	Tor tor	Barus	6	4	2	2	
	Family-Cobitidae						
20	Lepidocephalichthys	Currenah	14	12	14	0	
32	guniea Nemacheilus hotia	Gunguch	14	12	14	3	
24	Nemacheilus duvi	Gunguch	5	2		5	
25	Nemacheilus augi	Gunguch	6				
- 33	Family Notontaridaa	Gunguen	0				
36	Notoptarus notoptarus	Datola	10	5	0	Q	
30	Notopierus abitala	Chitala	10	5	9	0	
57	Family_Ambassidae	Cliitaia				1	
38	Chanda ranga	Kakhai	4	2	2	2	3
30	Chanda nama	Kakhai	14	8	2	14	16
57	Family-Sisoridae	Rakilai	17	0		14	10
40	Bagarius bagarius	Andha	3				
-10	Family-Gobiidae	7 mana					
41	Glassagahius giuris	Gillu	5	5	2	7	
	Family-	Ollita	5	5		,	
	Mastacembelidae						
42	Mastacembelus pancalus	Bam	3	1			2
43	Mastacembelus armatus	Bam	6	7	3	7	9
	Family-Schlibeidae						
44	Clupisoma garua	Bekeri	10	10		9	13

45	Eutropiichthys vacha	Vacha	4				
46	Silondia silonia	Silind	1				
	Family-Siluridae						
47	Ompok bimaculatus	Pabda	12	8	17	15	12
48	Wallago attu	Padhin	7	5	6	7	13
	Family-Bagridae						
49	Mystus cavasius	Tittu	7	8	6	7	9
50	Mystus tengra	Tengra	1				
51	Mystus bleekeri	Kittu	6	5	5	6	8
52	Mystus seenghala	Sighad	6	4	6	6	9
53	Mystus aor	Diger	2	2	1		2
54	Rita rita	Gagra		1			
	Family-Belonidae						
55	Xenentodon cancila	Suza Bam	5	5	2	4	
	Family-Nandidae						
56	Nandus nandus	Kabri		2		1	3
	Family-Ophiocephalidae						
57	Channa marulius	Samal	3	6		3	4
58	Channa gachua	Samal	4	2		3	4
59	Channa punctatus	Karra	2				
60	Channa striatus	Kabra	3	3		2	2
	Family-Saccobranchidae						
61	Heteropneustes fossilis	Singhi		3	5	2	3
	Family-Claridae						
62	Clarias batrachus	Magur	2	1	1		
	Family-Cichlidae						
63	Tilapia mossambica	Tilapia	35				11
	Family-Anabantidae						
64	Badis badis	-				3	
	Family-Mugilidae						
65	Rhinomugil corsula	Corsula	2				
			549	316	261	325	393

Figure 11. Fish abundance in Tapti and other basin of M.P

Figure 12. Family wise fish abundance in Tapti and other basin of M.P.

8.2. Conservation status of fishes

Freshwater fish species of Madhya Pradesh Under conservation status as per CAFF (2006) has been made in six categories viz. EN (Endangered), VU (Vulnerable), LRlc (Lower risk lest concern), LRnt (Lower risk near threatened), DD (Data deficient) and NE (Not evaluated).

Over all fish conservation status of fishes in M.P. throughout the study period. The total of 86 species were recorded in different river basin of M.P. out of 27 (31%) species belongs to LRnt, 19 (22%) species belongs to VU, 9 (11%) species under LRlc, 9 (10%) species were found in EN, 12 (14%) species represented DD and 10 (12%) species belongs to NE category.

8.2.1 Basin wise conservation status of fishes

8.2.1.1. Betwa basin

Total 67 species were documented in Betwa basin of M.P. out of 26 (39%) species belongs to LRnt, 16 (24%) species belongs to VU, 8 (12%) species under LRlc, 8 (12%) species were found in EN, 4 (6%) species represented DD and 5 (7%) species belongs to NE category.

8.2.1.2. Chambal basin

During the study 52 species were recorded in Chambal basin of M.P. out of 22 (42%) species belongs to LRnt, 11 (21%) species belongs to VU, 6 (12%) species under LRlc, 6 (12%) species were found in EN, 4 (8%) species represented DD and 3 (6%) species belongs to NE category.

8.2.1.3. Tapti basin

A total of 57 species were recorded in Tapti basin of M.P throughout the study, out of 24 (42%) species belongs to LRnt, 12 (21%) species belongs to VU, 5 (9%) species under LRlc, 5 (9%) species were found in EN, 7 (12%) species represented DD and 4 (7%) species belongs to NE category.

8.2.1.4. Ken basin

A total of 43 species were recorded in Ken basin of M.P throughout the study, out of 19 (44%) species belongs to LRnt, 10 (23%) species belongs to VU, 6 (14%) species under LRlc, 5 (12%) species were found in EN, 1 (2%) species represented DD and 2 (5%) species belongs to NE category.

8.2.1.5. Son basin

A total of 44 species were recorded in Ken basin of M.P throughout the study, out of 19 (43%) species belongs to LRnt, 9 (20%) species belongs to VU, 6 (14%) species under LRlc, 5 (11%) species were found in EN, 2 (5%) species represented DD and 3 (8%) species belongs to NE category.

8.2.1.6. Rajgarh district

A total of 39 species were recorded in Rajgarh basin of M.P throughout the study, out of 19 (49%) species belongs to LRnt, 9 (23%) species belongs to VU, 5 (13%) species under LRlc, 1 (2%) species were found in EN, 2 (5%) species represented DD and 3 (8%) species belongs to NE category.

				CAFF
S. No	Species	Family	Distribution	(2006)
	Amblypharogodon			
1	mola	Cyprinidae	Betwa river, Upper lake	LR-lc
2	Labeo Bata	Cyprinidae	Betwa river	LRnt
			Betwa river,Halali	
3	Labeo gonius	Cyprinidae	Reservoir	LRnt
4	Labeo boga	Cyprinidae	Betwa river, Upper lake	LRnt
			Betwa river, Upper lake,	
5	Labeo rohita	Cyprinidae	Halali Reservoir	LR-lc
			Betwa river,Halali	
6	Labeo calbasu	Cyprinidae	Reservoir,Upper lake	LRnt
7	Labeo dero	Cyprinidae	Upper lake	VU
8	Labeo angra	Cyprinidae	Betwa river, Upper lake	LRnt
9	Labeo fimbriatus	Cyprinidae	Betwa river	LRnt
10	Labeo dussuniere	Cyprinidae	Upper lake	VU
			Betwa river,Halali	
11	Cirrhinus mrigala	Cyprinidae	Reservoir,Upper lake	LRnt
12	Cyprinus carpio	Cyprinidae	Betwa river	NE
			Betwa river,Halali	
13	Catla catla	Cyprinidae	Reservoir, Upper lake	LRnt
14	Chela laubuca	Cyprinidae	Betwa river	LR-lc
15	Esomus danricus	Cyprinidae	Upper lake	LR-lc
16	Puntius conchonius	Cyprinidae	Betwa river, Upper lake	LRnt
			Betwa river,Halali	
17	Puntius saphore	Cyprinidae	Reservoir, Upper lake	LRnt

Table. 24. Fish conservation status in Betwa basin

18	Puntius dorsalis	Cyprinidae	Betwa river	EN
			Betwa river,Halali	
19	Puntius sarana	Cyprinidae	Reservoir,Upper lake	VU
20	Puntius ticto	Cyprinidae	Betwa river, Upper lake	LRnt
21	Puntius titius	Cyprinidae	Betwa river	NE
22	Danio davario	Cyprinidae	Betwa river, Upper lake	LRnt
			Betwa river,Halali	
23	Garra gotyla	Cyprinidae	Reservoir	VU
		~	Betwa river,Halali	
24	Oxygaster bacaila	Cyprinidae	Reservoir	DD
25	Oxygaster gora	Cyprinidae	Betwa river,Upper lake	DD
26	Oxygaster clupeoides	Cyprinidae	Betwa river	DD
27	Rasbora elanga	Cyprinidae	Betwa river, Upper lake	NE
28	Rasbora daniconius	Cyprinidae	Betwa river	LR-lc
29	Osteobrama cotio	Cyprinidae	Betwa river, Upper lake	LRnt
30	Garra lamta	Cyprinidae	Upper lake	VU
			Betwa river,Halali	
31	Barilius Bandelisis	Cyprinidae	Reservoir	LRnt
32	Barilius barila	Cyprinidae	Betwa river	LRnt
33	Tor tor	Cyprinidae	Betwa river	EN
	Lepidocephalichthys			
34	guntea	Cobitidae	Betwa river,Upper lake	LR-lc
35	Nemacheilus botia	Cobitidae	Betwa river, Upper lake	EN
			Betwa river,Halali	
36	Notopterus notopterus	Notopteridae	Reservoir, Upper lake	EN
37	Notopterus Chitala	Notopteridae	Halali Reservoir	EN
38	Chanda ranga	Ambassidae	Betwa river,Upper lake	LR-lc
39	Chanda nama	Ambassidae	Betwa river, Upper lake	VU
40	Bagarius bagarius	Sisoridae	Betwa river	VU
41	Glossogobius giuris	Gobiidae	Betwa river, Upper lake	LRnt
	Mastacembelus			
42	pancalus	Mastacembelidae	Betwa river,Upper lake	VU
10	Mastacembelus		Betwa river,Halali	
43	armatus	Mastacembelidae	Reservoir, Upper lake	LRnt
44	Clupisoma garua	Schlibeidae	Betwa river	VU
45	Eutropiichthys vacha	Schlibeidae	Betwa river	EN
46	Silondia silonia	Schlibeidae	Betwa river	LRnt
			Betwa river,Halali	
47	Ompok bimaculatus	Siluridae	Reservoir, Upper lake	EN
18	Wallago attu	Siluridae	Betwa river, Halali Reservoir	I Pnt
40		Descrites	Detwo miyon	LIXIII
10				

50	Mystus tengra	Bagridae	Betwa river	DD
			Betwa river,Halali	
51	Mystus bleekeri	Bagridae	Reservoir, Upper lake	VU
			Betwa river,Halali	
52	Mystus seenghala	Bagridae	Reservoir	LRnt
			Betwa river,Halali	
53	Mystus aor	Bagridae	Reservoir	LRnt
54	Rita rita	Bagridae	Betwa river	EN
55	Gonialosa manmina	Clupeidae	Betwa river, Upper lake	VU
56	Gudusia chapra	Clupeidae	Halali Reservoir	LR-lc
			Betwa river,Halali	
57	Xenentodon cancila	Belonidae	Reservoir, Upper lake	LRnt
58	Nandus nandus	Nandidae	Betwa river	LRnt
			Betwa river,Halali	
59	Channa marulius	Ophiocephalidae	Reservoir	VU
60	Channa gachua	Ophiocephalidae	Betwa river, Upper lake	NE
61	Channa punctatus	Ophiocephalidae	Betwa river	LRnt
62	Channa striatus	Ophiocephalidae	Betwa river, Upper lake	LRnt
	Heteropneustes			
63	fossilis	Saccobranchidae	Betwa river, Upper lake	VU
64	Clarias batrachus	Clariidae	Betwa river	VU
			Betwa river,Halali	
65	Rhinomugil corsula	Mugilidae	Reservoir	VU
66	Colisa fasciatus	Anabantidae	Upper lake	VU
67	Tilapia mossambica	Cichlidae	Betwa river	NE

Figure 13. Fish species conservation status according to CAFF (2006) in Betwa basin

S.No.	Species	Family	Distribution	CAFF
				(2006)
	Amblypharyngodon		Chambal river,Gandhi	
1	mola	Cyprinidae	sagar, Gambhir river	LR-lc
			Chambal river,Gandhi	
			sagar, Gambhir	
			dam,Gambhir river,	
2	Labeo bata	Cyprinidae	Shipra river	LRnt
			Chambal river,Gandhi	
3	Labeo boga	Cyprinidae	sagar,	LRnt
			Chambal river,Gandhi	
			sagar, Gambhir	
4	Labeo calbasu	Cyprinidae	dam,Gambhir river	LRnt
			Chambal river,Gandhi	
5	Labeo dyocheilus	Cyprinidae	sagar	VU
			Chambal river,Gandhi	
6	Labeo fimbriatus	Cyprinidae	sagar	LRnt
_		~	Chambal river,Gandhi	
7	Labeo gonius	Cyprinidae	sagar,	LRnt
			Chambal river,Gandhi	
0	T 1 11	G	sagar, Gambhir	
8	Labeo rohita	Cyprinidae	dam,Gambhir river	LR-lc
9	Labeo boggat	Cyprinidae	Chambal river	LRnt
			Chambal river,Gandhi	
			sagar, Gambhir	
10		G · · · 1	dam,Gambhir river,	LD (
10	Catla catla	Cyprinidae	Shipra river	LRnt
			Chambal river, Gandhi	
			sagar, Gambhin rissen	
11	Dunting conchaning	Cuminidaa	dam,Gambhir river,	I Dat
10	Funitus conchonius	Cyprinidae	Chambal river	
12	Puntius phutunio	Cyprinidae	Chambal river	LR-IC
			Chambal river, Gandhi	
			sagar, Gambhin river	
12	Puntius sonhore	Cuprinidaa	Shipra river	I Dnt
15	i unitus sopriore	Cyprinidae	Chambal river Condbi	
			sagar Gambhir dam	
14	Puntius ticto	Cyprinidae		LRnt
			Chambal river,Gandhi	
1.7		Council 1	sagar, Gambhir river,	
15	Osteobrama cotio	Cyprinidae	Shipra river	LKnt

Table 25. Fish conservation status in Chambal basin

			Chambal river,Gandhi	
			sagar, Gambhir	
			dam,Gambhir river,	
16	Oxygaster bacaila	Cyprinidae	Shipra river	DD
17	Oxygaster gora	Cyprinidae	Chambal river	DD
18	Oxygaster clupeoides	Cyprinidae	Chambal river	DD
			Chambal river,Gandhi	
			sagar, Gambhir	
			dam,Gambhir river,	
19	Danio davario	Cyprinidae	Shipra river	LRnt
			Chambal river,Gandhi	
20	Cyprinus carpio	Cyprinidae	sagar, Gambhir dam	NE
	Hypopthalimenthys		Chambal river,Gandhi	
21	molitrix	Cyprinidae	sagar	NE
			Chambal river,Gandhi	
			sagar, Gambhir	
22	Garra gotyla	Cyprinidae	dam,Gambhir river	VU
			Chambal river,Gandhi	
			sagar, Gambhir	
			dam,Gambhir river,	
23	Rasbora daniconius	Cyprinidae	Shipra river	LR-lc
			Chambal river,Gandhi	
24	Tor tor	Cyprinidae	sagar, Gambhir dam	EN
			Chambal river,Gandhi	
25	Cirrhinus mrigala	Cyprinidae	sagar, Gambhir dam	LRnt
			Chambal river,Gandhi	
			sagar, Gambhir	
			dam,Gambhir river,	
26	Chanda nama	Ambassidae	Shipra river	LR-lc
			Chambal river,Gandhi	
27	Chanda ranga	Ambassidae	sagar, Gambhir dam	VU
			Chambal river,Gandhi	
			sagar, Gambhir	
			dam,Gambhir river,	
28	Channa marulius	Ophiocephalidae	Shipra river	VU
			Chambal river,Gandhi	
29	Channa striatus	Ophiocephalidae	sagar, Gambhir dam	LRnt
30	Channa gachua	Ophiocephalidae	Chambal river	NE
31	Clarius batrachus	Clariidae	Gandhi sagar, Shipra river	VU
			Chambal river,Gandhi	
			sagar, Gambhir	
			dam,Gambhir river,	
32	Eutropiichthys vacha	Schlibeidae	Shipra river	EN
33	Clupisoma garua	Schlibeidae	Chambal river,Gandhi	VU

			sagar	
			Chambal river,Gandhi	
			sagar, Gambhir dam,	
34	Silonia silondia	Schlibeidae	Shipra river	LRnt
			Chambal river,Gandhi	
35	Glossogobius giuris	Gobiidae	sagar, Gambhir river	LRnt
			Chambal river Gandhi	Lituit
36	Gonialosa manmina	Clupeidae	sagar	VU
		Chaperade	Chambal river.Gandhi	
	Heteropneustes		sagar. Gambhir	
37	fossilis	Saccobranchidae	dam.Shipra river	VU
			Chambal river.Gandhi	
	Lepidocephalichthys		sagar, Gambhir	
38	guntea	Cobitidae	dam,Gambhir river	LR-lc
			Chambal river,Gandhi	
39	Nemacheilus botia	Cobitidae	sagar	EN
			Chambal river,Gandhi	
			sagar, Gambhir	
	Mastacembelus		dam,Gambhir river,	
40	armatus	Mastacembelidae	Shipra river	VU
	Mastacembelus		Chambal river,Gandhi	
41	pancalus	Mastacembelidae	saga	LRnt
			Chambal river,Gandhi	
			sagar, Gambhir	
			dam,Gambhir river,	
42	Mystus aor	Bagridae	Shipra river	LRnt
			Chambal river,Gandhi	
			sagar, Gambhir	
10			dam,Gambhir river,	
43	Mystus bleekeri	Bagridae	Shipra river	VU
		D 11	Chambal river,Gandhi	L D
44	Mystus cavasius	Bagridae	sagar	LKnt
			Chambal river, Gandhi	
45	Mystus seenghala	Bagridae	sagar, Gambhir dam	LRnt
46	Mystus tengra	Bagridae	Chambal river	DD
			Chambal river,Gandhi	
47	Rita rita	Bagridae	sagar	EN
			Chambal river,Gandhi	
			sagar, Gambhir dam,	
48	Notopterus notopterus	Notopteridae	Shipra river	EN
			Chambal river,Gandhi	
			sagar, Gambhir river,	
49	Ompok bimaculatus	Siluridae	Shipra river	EN
			Chambal river,Gandhi	
50	Wallago attu	Siluridae	sagar, Gambhir	LRnt

			dam,Gambhir river, Shipra river	
			Chambal river, Gandhi	
			sagar, Gambhir	
			dam,Gambhir river,	
51	Xenentodon cancila	Belonidae	Shipra river	LRnt
			Chambal river, Gandhi	
52	Bagarius bagarius	Sisoridae	sagar, Gambhir dam	VU

Figure 14. Fish species conservation status according to CAFF (2006) in Chambal basin

Table 26. Fish conservation status in Tapti basin

S.No	Species	Family	Distribution	CAFF (2006)
1	Amblypharogodon mola	Cyprinidae	Tapti river	LR-lc
2	Hypopthalimenthys molitrix	Cyprinidae	Tapti river	NE
3	Labeo bata	Cyprinidae	Tapti river	LRnt
4	Labeo gonius	Cyprinidae	Tapti river	LRnt
5	Labeo rohita	Cyprinidae	Tapti river	LR-lc
6	Labeo calbasu	Cyprinidae	Tapti river	LRnt
7	Labeo angra	Cyprinidae	Tapti river	LRnt
8	Labeo fimbriatus	Cyprinidae	Tapti river	LRnt
9	Labeo dyocheilus	Cyprinidae	Tapti river	VU
10	Cirrhinus mrigala	Cyprinidae	Tapti river	LRnt
11	Cyprinus carpio	Cyprinidae	Tapti river	NE

12	Crossocheilus latius	Cyprinidae	Tapti river	DD
13	Catla catla	Cyprinidae	Tapti river	LRnt
14	Chela laubuca	Cyprinidae	Tapti river	LR-lc
15	Puntius conchonius	Cyprinidae	Tapti river	LRnt
16	Puntius saphore	Cyprinidae	Tapti river	LRnt
17	Puntius sarana	Cyprinidae	Tapti river	VU
18	Puntius ticto	Cyprinidae	Tapti river	LRnt
19	Danio davario	Cyprinidae	Tapti river	LRnt
20	Garra gotyla	Cyprinidae	Tapti river	VU
21	Oxygaster bacaila	Cyprinidae	Tapti river	DD
22	Oxygaster gora	Cyprinidae	Tapti river	DD
23	Oxygaster clupeoides	Cyprinidae	Tapti river	DD
24	Rasbora daniconius	Cyprinidae	Tapti river	VU
25	Osteobrama cotio	Cyprinidae	Tapti river	LRnt
26	Barilius Bandelisis	Cyprinidae	Tapti river	LRnt
27	Barilius barila	Cyprinidae	Tapti river	LRnt
28	Tor tor	Cyprinidae	Tapti river	EN
29	Lepidocephalichthys guntea	Cobitidae	Tapti river	LR-lc
30	Nemacheilus botia	Cobitidae	Tapti river	EN
31	Nemacheilus duyi	Cobitidae	Tapti river	DD
32	Nemacheilus evezardi	Cobitidae	Tapti river	DD
33	Notopterus notopterus	Notopteridae	Tapti river	EN
34	Chanda ranga	Ambassidae	Tapti river	LR-lc
35	Chanda nama	Ambassidae	Tapti river	VU
36	Bagarius bagarius	Sisoridae	Tapti river	VU
37	Glossogobius giuris	Gobiidae	Tapti river	LRnt
38	Mastacembelus pancalus	Mastacembelidae	Tapti river	VU
39	Mastacembelus armatus	Mastacembelidae	Tapti river	LRnt
40	Clupisoma garua	Schlibeidae	Tapti river	VU
41	Eutropiichthys vacha	Schlibeidae	Tapti river	EN
42	Silondia silonia	Schlibeidae	Tapti river	LRnt
43	Ompok bimaculatus	Siluridae	Tapti river	EN
44	Wallago attu	Siluridae	Tapti river	LRnt
45	Mystus cavasius	Bagridae	Tapti river	LRnt
46	Mystus tengra	Bagridae	Tapti river	DD
47	Mystus bleekeri	Bagridae	Tapti river	VU
48	Mystus seenghala	Bagridae	Tapti river	LRnt
49	Mystus aor	Bagridae	Tapti river	LRnt
50	Xenentodon cancila	Belonidae	Tapti river	LRnt

51	Channa marulius	Ophiocephalidae	Tapti river	VU
52	Channa gachua	Ophiocephalidae	Tapti river	NE
53	Channa punctatus	Ophiocephalidae	Tapti river	LRnt
54	Channa striatus	Ophiocephalidae	Tapti river	LRnt
55	Clarias batrachus	Clariidae	Tapti river	VU
56	Tilapia mossambica	Cichlidae	Tapti river	NE
57	Rhinomugil corsula	Mugilidae	Tapti river	VU

Figure 15. Fish species conservation status according to CAFF (2006) in Tapti basin

Table 27. Fish conservation status in Ken basin

S. No	Species	Family	Distribution	CAFF (2006)
1	Amblypharogodon mola	Cyprinidae	Ken river	LR-lc
2	Labeo Bata	Cyprinidae	Ken river	LRnt
3	Labeo gonius	Cyprinidae	Ken river	LRnt
4	Labeo boga	Cyprinidae	Ken river	LRnt
5	Labeo rohita	Cyprinidae	Ken river	LRnt
6	Labeo calbasu	Cyprinidae	Ken river	LR-lc
7	Labeo dero	Cyprinidae	Ken river	LRnt
8	Cirrhinus mrigala	Cyprinidae	Ken river	VU
9	Catla catla	Cyprinidae	Ken river	LRnt
10	Chela laubuca	Cyprinidae	Ken river	LR-lc
11	Puntius conchonius	Cyprinidae	Ken river	LRnt
12	Puntius saphore	Cyprinidae	Ken river	LRnt

13	Puntius sarana	Cyprinidae	Ken river	VU
14	Puntius ticto	Cyprinidae	Ken river	LRnt
15	Danio davario	Cyprinidae	Ken river	LRnt
16	Garra gotyla	Cyprinidae	Ken river	VU
17	Oxygaster bacaila	Cyprinidae	Ken river	DD
18	Rasbora daniconius	Cyprinidae	Ken river	LR-lc
19	Osteobrama cotio	Cyprinidae	Ken river	LRnt
20	Tor tor	Cyprinidae	Ken river	EN
21	Lepidocephalichthys guntea	Cobitidae	Ken river	LR-lc
22	Nemacheilus botia	Cobitidae	Ken river	EN
23	Notopterus notopterus	Notopteridae	Ken river	EN
24	Chanda ranga	Ambassidae	Ken river	LR-lc
25	Chanda nama	Ambassidae	Ken river	VU
26	Glossogobius giuris	Gobiidae	Ken river	LRnt
27	Mastacembelus pancalus	Mastacembelidae	Ken river	VU
28	Mastacembelus armatus	Mastacembelidae	Ken river	LRnt
29	Clupisoma garua	Schlibeidae	Ken river	VU
30	Ompok bimaculatus	Siluridae	Ken river	EN
31	Wallago attu	Siluridae	Ken river	LRnt
32	Mystus cavasius	Bagridae	Ken river	LRnt
33	Mystus bleekeri	Bagridae	Ken river	VU
34	Mystus seenghala	Bagridae	Ken river	LRnt
35	Mystus aor	Bagridae	Ken river	LRnt
36	Rita rita	Bagridae	Ken river	EN
37	Xenentodon cancila	Belonidae	Ken river	LRnt
38	Nandus nandus	Nandidae	Ken river	LRnt
39	Channa marulius	Ophiocephalidae	Ken river	VU
40	Channa gachua	Ophiocephalidae	Ken river	NE
41	Channa striatus	Ophiocephalidae	Ken river	LRnt
42	Heteropneustes fossilis	Saccobranchidae	Ken river	VU
43	Clarias batrachus	Clariidae	Ken river	VU

Figure 16. Fish species conservation status according to CAFF (2006) in Ken basin

Table. 28. Fish conservation status in Son basin

S. No	Species	Family	Distribution	CAFF (2006)
1	Amblypharogodon mola	Cyprinidae	Bansagar	LR-lc
	Hypopthalimenthys			
2	molitrix	Cyprinidae	Bansagar	NE
			Govind	
3	Labeo Bata	Cyprinidae	sagar,Bansagar	LRnt
4	Labeo gonius	Cyprinidae	Bansagar	LRnt
			Govind	
5	Labeo rohita	Cyprinidae	sagar,Bansagar	LR-lc
6	Labeo calbasu	Cyprinidae	Bansagar	LRnt
			Govind	
7	Cirrhinus mrigala	Cyprinidae	sagar,Bansagar	LRnt
			Govind	
8	Cyprinus carpio	Cyprinidae	sagar,Bansagar	NE
			Govind	
9	Catla catla	Cyprinidae	sagar,Bansagar	LRnt
10	Chela laubuca	Cyprinidae	Bansagar	LR-lc
			Govind	
11	Puntius conchonius	Cyprinidae	sagar,Bansagar	LRnt
12	Puntius saphore	Cyprinidae	Bansagar	LRnt
13	Puntius sarana	Cvprinidae	Bansagar	VU
			Govind	
14	Puntius ticto	Cyprinidae	sagar,Bansagar	LRnt
15	Puntius chola	Cyprinidae	Bansagar	VU
16	Garra gotyla	Cyprinidae	Govind	VU

			sagar,Bansagar	
			Govind	
17	Oxygaster bacaila	Cyprinidae	sagar,Bansagar	DD
			Govind	
18	Rasbora daniconius	Cyprinidae	sagar,Bansagar	LR-lc
19	Osteobrama cotio	Cyprinidae	Bansagar	LRnt
20	Barilius Bandelisis	Cyprinidae	Bansagar	LRnt
			Govind	
21	Tor tor	Cyprinidae	sagar,Bansagar	EN
	Lepidocephalichthys		Govind	
22	guntea	Cobitidae	sagar,Bansagar	LR-lc
23	Nemacheilus botia	Cobitidae	Bansagar	EN
			Govind	
24	Notopterus notopterus	Notopteridae	sagar,Bansagar	EN
25	Notopterus Chitala	Notopteridae	Bansagar	EN
			Govind	
26	Chanda ranga	Ambassidae	sagar,Bansagar	LR-lc
27	Chanda nama	Ambassidae	Bansagar	VU
			Govind	
28	Glossogobius giuris	Gobiidae	sagar,Bansagar	LRnt
			Govind	
29	Mastacembelus armatus	Mastacembelidae	sagar,Bansagar	LRnt
30	Clupisoma garua	Schlibeidae	Bansagar	VU
			Govind	
31	Ompok bimaculatus	Siluridae	sagar,Bansagar	EN
22		Cilianida e	Govind	I Dat
32	wallago anu	Siluridae	Sagar, Bansagar	LKII
33	Mustus cavasius	Bagridae	Govinu sagar Bansagar	I Dnt
24	Mustus blackeri	Dagridae	Sagai, Dalisagai	
34	Myslus bleekeri	Dagridae	Gouind	VU
35	Mustus seenahala	Bagridae	sagar Bansagar	I Rnt
35	Mystus seenghaid	Bagridae	Govind soger	L Rnt
		Dagiluae	Govind	LKIII
37	Xenentodon cancila	Belonidae	sagar Bansagar	I Rnt
38	Nandus nandus	Nandidae	Bansagar	I Rnt
20	Channa manulius	Onhioanhalidaa	Banagar	
39	Channa marullus	Ophicephandae	Dansagar	V U
40	Channa gachua	Opniocephalidae	Bansagar	NE
41	Channa striatus	Ophiocephalidae	Bansagar	LRnt
40	Hotononn sustas f:1:-	Saaahuanahida	Govind	V/I I
42	neteropneustes jossilis	Saccobranchidae	sagar, Bansagar	VU
43	Clarias batrachus	Claridae	Govind sagar	VU
44	Badis badis	Anabantidae	Bansagar	DD

Figure 17. Fish species conservation status according to CAFF (2006) in Son basin

Table 29. Fish conservation status in Rajgarh basin

S.No	Species	Family	Distribution	CAFF (2006)	
			Bandavedra		
1	Amblypharyngodon mola	Cyprinidae	pond,Namaj river	LR-lc	
			Kudali pond,Namaj		
2	Barilius bendelisis	Cyprinidae	river	LRnt	
			Bandavedra		
3	Barilius barila	Cyprinidae	pond,Namaj river	LRnt	
4	Cyprinus carpio	Cyprinidae	Bandavedra pond	NE	
			Bandavedra		
			pond,Kudali		
5	Catla catla	Cyprinidae	pond,Namaj river	LRnt	
6	Cirrhinus mrigala	Cyprinidae	Bandavedra pond	LRnt	
			Bandavedra		
			pond,Kudali		
7	Chela laubuca	Cyprinidae	pond,Namaj river	LR-lc	
			Kudali pond,Namaj		
8	Labeo dero	Cyprinidae	river	VU	
			Kudali pond,Namaj		
9	Labeo bata	Cyprinidae	river	LRnt	
10	Labeo rohita	Cyprinidae	Bandavedra pond	LR-lc	
11	Labeo calbasu	Cyprinidae	Namaj river	LRnt	
12	Labeo angra	Cyprinidae	Kudali pond,Namaj	LRnt	

			river	
13	Labeo fimbraitus	Cyprinidae	Namaj river	LRnt
			Kudali pond,Namaj	
14	Puntius conchonius	Cyprinidae	river	LRnt
			Bandavedra	
			pond,Kudali	
15	Puntius ticto	Cyprinidae	pond,Namaj river	LRnt
4.0		Comminidae	Bandavedra	L D (
16	Puntius saphore	Cyprinidae	pond,Namaj river	LKnt
			pond Kudali	
17	Puntius sarana	Cyprinidae	pond, Namai river	VU
18	Osteobrama cotio	Cyprinidae	Namai river	I Rnt
10		Cyprinidae	Bandavedra	Lixiit
			pond.Kudali	
19	Oxygaster bacaila	Cyprinidae	pond,Namaj river	DD
			Kudali pond,Namaj	
20	Oxygaster gora	Cyprinidae	river	DD
			Kudali pond,Namaj	
21	Rasbora daniconius	Cyprinidae	river	LR-lc
22	Garra gotyla	Cyprinidae	Namaj river	VU
			Kudali pond,Namaj	
23	Wallago attu	Siluridae	river	LRnt
24	Ompok bimaculatus	Siluridae	Namaj river	EN
25	Clupisoma garua	Sichilibedae	Namaj river	VU
26	Mystus cavasius	Bagridae	Namaj river	LRnt
27	Mystus seenghala	Bagridae	Namaj river	LRnt
28	Mystus aor	Bagridae	Namaj river	LRnt
29	Mystus bleekeri	Bagridae	Namaj river	VU
30	Chanda ranga	Ambassidae	Namaj river	LR-lc
			Bandavedra	
31	Chanda nama	Ambassidae	pond,Namaj river	VU
			Kudali pond,Namaj	
32	Channa marulius	Ophiocephalidae	river	VU
33	Channa gachua	Ophiocephalidae	Namaj river	
34	Channa straitus	Ophiocephalidae	Namaj river	LRnt
			Bandavedra	
		Master 1 111	pond,Kudali	
35	Mastacembelus armatus	Mastacembelidae	pond, Namaj river	LKnt
36	Mastacembelus pancalus	Mastacembelidae	Namaj river	VU
37	Nandus nandus	Nandidae	Namaj river	LRnt
38	Heterupneustus fossilis	Saccobranchidae	Namaj river	VU
39	Tilapia mossambica	Cichlidae	Namaj river	NE

Figure 18. Fish species conservation status according to CAFF (2006) in Rajgarh

Table. 30. Overall fish conservation status during the study

S.No	Species	Family	Distribution	CAFF (2006)
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
1	Amblypharyngodon mola	Cyprinidae	basin, Rajgarh basin	LR-lc
2	Cenopharyngodon idella	Cyprinidae	Narmada basin	NE
			Betwa basin, Son	
			basin, tapti basin,	
			Narmada basin,	
3	Barilius bandelisis	Cyprinidae	Rajgarh basin	LRnt
			Betwa basin, Tapti	
			basin, Narmada	
4	Barilius barila	Cyprinidae	basin,Rajgarh basin	LRnt
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
5	Catla catla	Cyprinidae	basin,Rajgarh basin	LRnt

			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
6	Chela laubuca	Cyprinidae	basin,Rajgarh basin	LR-lc
7	Esomus danricus	Cyprinidae	Betwa basin	LR-lc
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
8	Cirrhinus mrigala	Cyprinidae	basin,Rajgarh basin	LRnt
			Chambal basin,	
			Betwa basin,Son	
			basin, Tapti	
			basin,Narmada	
9	Cyprinus carpio	Cyprinidae	basin,Rajgarh basin	NE
10	Crossocheilus latius	Cyprinidae	Tapti basin	DD
			Chambal basin,	
			Betwa basin, Ken	
			basin, Tapti	
11	Danio davario	Cyprinidae	basin,Narmada basin	LRnt
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
12	Garra gotyla	Cyprinidae	Tapti basin	VU
			Betwa basin,	
13	Garra lamta	Cyprinidae	Narmada basin	VU
	Hypopthalimenthys		Chambal basin,Son	
14	molitrix	Cyprinidae	basin, Tapti basin	NE
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
15	Labeo bata	Cyprinidae	basin,Rajgarh basin	LRnt
			Chambal basin,	
			Betwa basin, Ken	
16	Labeo boga	Cyprinidae	basin,Narmada basin	LRnt
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
17	Labeo calbasu	Cyprinidae	basin,Rajgarh basin	LRnt
			Chambal basin,	
18	Labeo dyocheilus	Cyprinidae	Tapti basin,	VU

			Chambal basin,	
			Betwa basin,Tapti	
			basin,Narmada	
19	Labeo fimbriatus	Cyprinidae	basin,Rajgarh basin	LRnt
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
20	Labeo gonius	Cyprinidae	basin,Rajgarh basin	LRnt
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
21	Labeo rohita	Cyprinidae	basin,Rajgarh basin	LR-lc
			Betwa basin, Ken	
22	Labeo dero	Cyprinidae	basin,Rajgarh basin	VU
		-)1	Betwa basin, Tapti	
23	Laboo anara	Cuprinidae	basin, Rajgarh basin	I Dnt
23	Labeo ungra	Cyprinidae	Narmada hasin	
24	Labeo pangusia	Cyprinidae	Chambal basin	DD
			Normada basin	
25	Labeo boggut	Cyprinidae	Inarmada basm	LRnt
26	Labeo dussuniere	Cyprinidae	Betwa basin	VU
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
27	Puntius conchonius	Cyprinidae	basin	LRnt
28	Puntius phutunio	Cyprinidae	Chambal basin	LR-lc
			Betwa basin, Son	
29	Puntius dorsalis	Cyprinidae	basin	EN
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
30	Puntius sarana	Cyprinidae	basin	VU
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
31	Puntius sophore	Cyprinidae	basin	LRnt
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
32	Puntius ticto	Cyprinidae	basin	LRnt
33	Puntius amphibius	Cyprinidae	Narmada basin	DD

34	Puntius chrysopoma	Cyprinidae	Narmada basin NE		
35	Puntius ambasis	Cyprinidae	Narmada basin	NE	
36	Puntius chola	Cyprinidae	Son basin	VU	
			Betwa		
37	Puntius titius	Cyprinidae	basin,Narmada basin	NE	
			Chambal basin,		
			Betwa basin, Ken		
			basin,Son basin,		
20		G · · · 1	Tapti basin,Narmada		
38	Osteobrama cotio	Cyprinidae	basin	LRnt	
39	Osteobrama vigorsii	Cyprinidae	Narmada basın	DD	
			Chambal basin,		
			Betwa basin, Ken		
			basın,Son basın,		
10		a · · 1	Tapti basin,Narmada		
40	Oxygaster bacaila	Cyprinidae	basin	DD	
			Chambal basin,		
4.1		Course in the s	Betwa basin, Tapti	DD	
41	Oxygaster gora	Cyprinidae	Dasin,Narmada Dasin	DD	
			Chambal basin,		
12	Ormagstan alun agidag	Currinidaa	betwa basin, Tapu	מס	
42	Oxygaster ctupeotaes	Cyprinidae	Chambal basin	DD	
			Rotwo bosin Kon		
			betwa Uashi, Keli		
			Tanti basin Narmada		
43	Rashora daniconius	Cyprinidae	hasin	LR-lc	
13	Rashora alanga	Cyprinidae	Betwa basin	NE	
	Kusboru etangu		Chambal basin		
			Betwa basin Ken		
			basin Son basin		
			Tapti basin.Narmada		
45	Tor tor	Cyprinidae	basin	EN	
			Chambal basin.		
			Betwa basin, Ken		
			basin,Son basin,		
	Lepidocephalichthys		Tapti basin,Narmada		
46	guntea	Cobitidae	basin	LR-lc	
			Chambal basin,		
			Betwa basin, Ken		
			basin,Son basin,		
			Tapti basin,Narmada		
47	Nemacheilus botia	Cobitidae	basin	EN	
48	Nemacheilus duyi	Cobitidae	Tapti basin	DD	
49	Nemacheilus evezardi	Cobitidae	Tapti basin	DD	

			Chambal basin,	
			Betwa basin,Son	
			basin, Tapti	
50	Clupisoma garua	Schlibeidae	basin,Narmada basin	VU
			Chambal basin,	
			Betwa basin, Tapti	
51	Eutropiichthys vacha	Schlibeidae	basin,Narmada basin	EN
			Chambal basin,	
			Betwa basin, Tapti	
52	Silondia silondia	Schlibeidae	basin,Narmada basin	LRnt
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
53	Glossogobius giuris	Gobiidae	basin	LRnt
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son	
54	Heteropneustes fossilis	Saccobranchidae	basin,Narmada basin	VU
			Chambal basin,	
			Betwa basin,	
55	Gonialosa manmina	Clupeidae	Narmada basin	VU
56	Gudusia chapra	Clupeidae	Betwa basin	LR-lc
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
57	Mastacembelus armatus	Mastacembelidae	basin	LRnt
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
58	Mastacembelus pancalus	Mastacembelidae	basin	VU
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
59	Clarius batrachus	Clariidae	basin	VU
			Chambal basin,	
			Betwa basin, Tapti	
60	Channa gachua	Ophiocephalidae	basin,Narmada basin	
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
61	Channa marulius	Ophiocephalidae	basin	VU
62	Channa punctatus	Ophiocephalidae	Betwa basin, Tapti	LRnt

			basin	
			Chambal basin,	
			Betwa basin, Ken	
			basin, Tapti	
63	Channa striatus	Ophiocephalidae	basin,Narmada basin	LRnt
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
64	Chanda nama	Ambassidae	basin	LR-lc
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
65	Chanda ranga	Ambassidae	basin	VU
66	Chanda baculis	Ambassidae		DD
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
67	Mystus aor	Bagridae	basin	LRnt
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
68	Mystus bleekeri	Bagridae	basin	VU
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
69	Mystus cavasius	Bagridae	Tapti basin	LRnt
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,	
70	Mystus seenghala	Bagridae	Narmada basin	LRnt
			Chambal basin,	
71	Mystus tengra	Bagridae	Betwa basin,	DD
			Chambal basin,	
			Betwa basin, Ken	
			basin, Narmada	
72	Rita rita	Bagridae	basin	EN
			Betwa basin, Son	
73	Notopterus chitala	Notopteridae	basin	EN

			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
74	Notopterus notopterus	Notopteridae	basin	EN
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
75	Ompok bimaculatus	Siluridae	basin	EN
76	Ompok pabda	Siluridae	Narmada basin	EN
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
77	Wallago attu	Siluridae	basin	LRnt
			Betwa basin, Ken	
78	Nandus nandus	Nandidae	basin,Narmada basin	LRnt
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
			Tapti basin,Narmada	
79	Xenentodon cancila	Belonidae	basin	LRnt
			Betwa basin, Tapti	
80	Rhinomugil corsula	Mugilidae	basin	VU
			Betwa	
81	Colisa fasciatus	Anabantidae	basin,Narmada basin	VU
			Son basin, Narmada	
82	Anabas testudineus	Anabantidae	basin	VU
83	Badis badis	Anabantidae	Son basin	DD
			Betwa basin,Tapti	
84	Tilapia mossambica	Cichlidae	basin	NE
			Chambal basin,	
			Betwa basin, Ken	
			basin,Son basin,	
85	Bagarius bagarius	Sisoridae	Tapti basin	VU
	Parapsilorhynchus		Chambal basin,	
86	tentaculatus	Parasilorhynchidae	Narmada basin	NE

Figure 19. Overall fish species conservation status according to CAFF (2006) during the study

9. Plankton diversity

9.1. Phytoplankton

Phytoplanktons are the autotrophic component of the plankton community. Phytoplanktons are chlorophyll bearing suspended microscopic organisms consisting of algae. Their unique ability to fix inorganic carbon to build up organic matter through primary production makes their study a subject of primary importance. Phytoplankton Diversity in fresh water is one of the most important steps in the complex analysis of aquatic ecosystem, because phytoplankton being the primary producers constitutes the basic food source of the water body which supports the aquatic animals. Thus for any kind of utilization of water from a natural source the study of phytoplankton is of primary interest.

During the Phytoplanktonic study at different river basin of Madhya Pradesh a total of 83 species belonging to three major group's viz. *Chlorophyceae*, *Bacillariophyceae*, *Cyanophyceae* were identified. *Chlorophyceae* has been recorded as the most dominant group of phytoplankton in the river basins represented by 39 species(47%) followed by *Bacillariophyceae* represented by 23 species (28%) and *Cyanophyceae* represented by 21 species(25%).

Phytoplankton community of the different river basin showed a rich diversity. During the Phytoplankton study at the river basin the higher diversity was observed in Betwa Basin comprises of 63 species followed by Chambal Basin comprises of 48 species, Tapti basin comprises of 34 species, Sone Basin comprises of 31 species, Ken Basin comprises of 23 species, Seasonal ponds and river of Rajgarh District comprises of 24 species.

9.1.1 Phytoplankton diversity in Betwa Basin

During the study the higher phytoplankton community was recorded at the Betwa basin with a total of 63 species. The most dominant group was *Chlorophyceae* represented by 25 species (40%). Other significant groups which are *Bacillariophyceae* and *Cyanophyceae* independently comprises of 19 species (30%). The higher diversity of phytoplankton was observed during summer (51species) followed by a gradual

decreasing trend in winter (47species) season, ultimately lowest to post monsoon (41species) season.

Chlorophyceae

During the study 25 species of Chlorophyceae group was identified as the most dominant group of phytoplankton. Not much variation was observed in summer, winter and post monsoon seasons. The diversity of *Chlorophyceae* was observed during winter and summer season were same (20pecies) while in the post monsoon season 19 species were recorded.

Bacillariophyceae

During the period under study 19 species of *Bacillariophyceae* group was identified and represented as second dominant group of phytoplankton. The maximum diversity of *Bacillariophyceae* was observed during summer (15species) season while the minimum was observed in the Post monsoon (8 species) season.

Cyanophyceae

During the period under study 19 species of *Cyanophyceae* group was identified. The maximum diversity of *Cyanophyceae* was observed during summer and winter season were same (16pecies) while in the post monsoon season 14 species were recorded.

9.1.2. Phytoplankton diversity in Chambal Basin

Rich diversity in the species of phytoplankton has been recorded in the Chambal Basin with a total of 48 species. The most dominant group was *Chlorophyceae* represented by 22 species (46%), followed by *Bacillariophyceae* comprises with 14 species (29%) and *Cyanophyceae* represented by 12 species (25%). The higher diversity of phytoplankton was observed during winter (36 species) and summer (30 species) season while lower diversity was observed during post monsoon (24 species) season.

Chlorophyceae

During the study 22 species *of Chlorophyceae group* was identified as the most dominant group of phytoplankton. The maximum diversity of *Chlorophyceae* was observed during

winter (18species) season while the minimum was observed in the Post monsoon (10species) season.

Bacillariophyceae

During the period under study 14 species of *Bacillariophyceae* group was identified and represented as second dominant group of phytoplankton. Not much variation was observed in winter and post monsoon season. The higher diversity was recorded during winter (12 species) season followed by a gradual decreasing trend in post monsoon (10 species) season, ultimately lowest to summer (7 species) season.

Cyanophyceae

Cyanophyceae as a component of phytoplankton was third to *Chlorophyceae in showing* prominence. During the study 12 species of *Cyanophyceae* group was identified. The maximum diversity was recorded during summer (10 species) season while the minimum diversity was recorded in the post monsoon (4 species) season.

9.1.3. Phytoplanton diversity Tapti Basin

The phytoplankton community of Tapti Basin comprises of 34 species. The most dominant group was *Chlorophyceae* represented by 19 species (56%) followed by *Bacillariophyceae* with 10 species (29%) and *Cyanophyceae* represented by 5 species (15%). Not much variation seen in diversity of phytoplankton during seasons. Their higher diversity was recorded during summer (26 species) season followed by a gradual decreasing trend in winter (22 species) season, ultimately lowest to post monsoon (21 species) season.

Chlorophyceae

During the study *Chlorophyceae* groups comprises of 19 species. During season not much variation seen in diversity of Chlorophyceae. Their higher diversity was observed in summer (14pecies) season while in the winter and post monsoon season diversity was observed same (13species).

Bacillariophyceae

During the period under study 10 species of *Bacillariophyceae* group was identified and represented as second dominant group of phytoplankton. The maximum diversity of *Bacillariophyceae* was observed during summer (8 species) season while the minimum was observed in the winter and Post monsoon season independently 5 species.

Cyanophyceae

During the study *Cyanophyceae* groups comprises of 5 species. The diversity of *Cyanophyceae was* observed during winter and summer season were same (4 species) while in the post monsoon season 3 species were recorded.

9.1.4. Phytoplankton diversity in Ken Basin

The phytoplankton community has been recorded in the Ken Basin with a total of 23 species. The most dominant group was *Chlorophyceae* represented by 14 species (61%), followed by *Bacillariophyceae* with 5 species (22%) and *Cyanophyceae* represented by 4 species (17%). The higher diversity of phytoplankton was observed during summer (20 species) season followed by a gradual decreasing trend in winter (17 species) season, ultimately lowest to post monsoon (16 species) season.

Chlorophyceae

During the study 14 species of *Chlorophyceae* group was identified as the most dominant group of phytoplankton. The maximum diversity of *Chlorophyceae* was observed during summer (14 species) season followed by a gradual decreasing trend in winter (11 species) season, ultimately lowest to post monsoon (10 species) season.

Bacillariophyceae

During the period under study 5 species of *Bacillariophyceae* group was identified. During season not much variation seen in diversity of *Bacillariophyceae*. Their higher diversity was observed in post monsoon (4 species) season while in the winter and summer season diversity was observed same (3 species).

Cyanophyceae

During the period under study 4 species of *Cyanophyceae group* was identified. Not much variation was observed in summer, winter and post monsoon seasons. The diversity of *Cyanophyceae* was observed during winter and summer season were same (3 species) while in the post monsoon season 2 species were recorded.

9.1.5. Phytoplankton diversity in Son Basin

The phytoplankton community of Son Basin comprises of 31 species. The most dominant group was *Chlorophyceae* represented by 20 species (65%) followed by *Cyanophyceae* with 6 species (19%) and *Bacillariophyceae* represented by 5 species (16%). Not much variation seen in diversity of phytoplankton during seasons. Their higher diversity was recorded during summer and winter season were same (23 species) while in the post monsoon season 20 species were recorded.

Chlorophyceae

During the study *Chlorophyceae* groups comprises of 20 species. The higher diversity of *Chlorophyceae* was observed during winter (16 species) season followed by a gradual decreasing trend in summer (16 species) season. The minimum diversity was recorded during Post Monsoon (13 species) season.

Bacillariophyceae

During the period under study 5 species of *Bacillariophyceae* group was identified. Not much variation was observed in summer, winter and post monsoon seasons. The diversity of *Bacillariophyceae* was observed during summer and post monsoon season were same (4 species) while in the winter season 3 species were recorded.

Cyanophyceae

During the period under study 6 species of *Cyanophyceae* group was identified and represented as second dominant group of phytoplankton. Not much variation was observed in summer, winter and post monsoon seasons. The diversity of *Cyanophyceae*

was observed during summer and winter season were same (4 species) while in the post monsoon season 3 species were recorded.

9.1.6. Phytoplankton diversity in Rajgarh District

The phytoplankton community has been recorded in the Seasonal ponds and river of Rajgarh District comprises of 24 species. The most dominant group was *Chlorophyceae* represented by 13 species (54%), followed by *Bacillariophyceae* with 7 species (29%) and *Cyanophyceae* represented by 4 species (17%). The higher diversity of phytoplankton was observed during winter (20 species) season followed by a gradual decreasing trend in summer (18 species) season, ultimately lowest to post monsoon (14 species) season.

Chlorophyceae

During the study 13 species of Chlorophyceae group was identified as the most dominant group of phytoplankton. The maximum diversity of Chlorophyceae was observed during winter (14 species) season followed by a gradual decreasing trend in summer (9 species) season, ultimately lowest to post monsoon (8 species) season.

Bacillariophyceae

During the period under study 7 species of *Bacillariophyceae* group was identified and represented as second dominant group of phytoplankton. Not much variation was observed in summer, winter and post monsoon seasons. The maximum diversity of *Bacillariophyceae* was observed during winter (6 species) season followed by a gradual decreasing trend in summer (5 species) season, ultimately lowest to post monsoon (4 species) season.

Cyanophyceae

During the period under study 4 species of *Cyanophyceae group* was identified. The maximum diversity of *Cyanophyceae* was observed during summer (4 species) season while the minimum was observed in the winter (1 species) season.

S.No	Species	Chambal Basin	Betwa basin	Tapti basin	Ken Basin	Sone Basin	Rajgarh District.
	Chlorophyceae						
1	Botryoceoceus bramii		1		1	1	
2	Clostarium sps.		1	1	1	1	1
3	Cosmarium reniforme	1	1	1		1	
4	Cosmarium sps.	1		1	1	1	1
5	Edorina sps.	1		1		1	
6	Spirogyra sps.	1	1	1	1	1	1
7	Chlamydomonas sps.	1	1	1			
8	Gonium sps.	1	1			1	
9	Haematococcus locusteris		1				
10	Haemalocaccus sps.		1				
11	Microspora floccose		1		1		1
12	Uronema elongatum	1	1				
13	Cylindrocapses sps.	1	1				
14	Sphaerocystis sps.		1				
15	Staurastrum sps.		1				
16	Mougeotia sps.	1	1	1		1	
17	Golenkinia sps.		1				
18	Sehroederia sps.		1				
19	Ankistrodesmus sps.	1	1				1
20	Zygnema sps.	1	1			1	
21	Pandorina sps.	1		1			
22	Volvox sps.	1	1	1	1	1	1
23	Ulothrix sps.				1		1
24	Zygnema pectinata	1	1	1	1	1	
25	Zygnemaopsis sps.			1			
26	Desmidium sps.			1	1	1	1
27	Tetrahedron sps.			1			
28	Mougeotia sps.			1		1	
29	Ankristodesmus falcatus	1	1	1			
30	Arthrodesmus sps.				1	1	1
31	Stichococcus sps.	1				1	
32	Dispora sps.						
33	Pediastrum duplex	1	1	1	1	1	1

Table 31. Overall Phytoplankton diversity in different river basin of M.P.

34	Pediastrum simplex	1	1	1	1	1	1
35	Oedogonium sps.		1	1	1	1	
36	Spirogyra communis	1		1	1	1	1
37	Scenedesmus quadricauda	1					1
38	Scenedesmus opotiensis	1	1			1	
39	Scenedesmus sps.	1					
	Bacillariophyceae						
40	Pinnularia sps.	1	1	1	1	1	1
41	Bacillaria sps.	1		1		1	1
42	Navicula subrhiynchocephalus		1	1	1	1	1
43	Navicula cuspidata	1	1				
44	Navicula gracilis	1	1				
45	Amphipleura sps.	1					
46	Synedra sps.	1	1	1	1		1
47	Nitzschia sps.	1	1			1	
48	<i>Melosira</i> sps.	1	1				
49	Cyclotella sps.		1	1		1	
50	Cocconesis sps.	1					
51	Eunotia sps.	1	1	1			1
52	Tabellaria sps.	1	1				1
53	Biddulhhia laevis		1				
54	Xsteionella sps.		1				
55	Denticula sps.		1				
56	Cylindrospermum sps.		1				
57	Surirella sps.	1	1				
58	Cymbella affinis		1	1			
59	Gomphonema sps.	1	1	1			
60	Diatomella sps.	1					
61	Fragilaria sps.		1	1	1		1
62	Asterionella sps.		1	1	1		
	Cyanophyceae						
63	Phormidium mucicola	1		1	1	1	
64	Spirulina laxissima	1	1	1	1	1	1
65	Spirulina priceps	1	1				
66	Chroococcus sps.	1	1			1	
67	Aphanocapsa banaresensis	1	1	1		1	1
68	Microcystis acruginosa	1	1	1	1	1	
69	Microcystis robusta	1	1				1
70	Microcystis marginata		1				1

71	Microcystis flosaquae		1				
72	Microcystis pseudofilumentosa		1				
73	Microcystis elongate		1				
74	Microcystis viridis	1	1				
75	Synechocystis sps.	1		1	1	1	
76	Rivularia sps.	1	1				
77	Stigonema sps.		1				
78	Ocilatoria limosa		1				
79	Ocilatoria curviceps		1				
80	Nodularia sps.		1				
81	Nostoc sps.	1	1				
82	Merismopedia sps.		1				
83	Anabena sps.	1	1				
		48	63	34	23	31	24

Figure 20. Phytoplankton diversity in different river basin of M.P

Figure 21. Group wise Phytoplankton species composition in river basin of M.P

S.No	Species	Summer	Winter	Post monsoon
	Chlorophyceae			
1	Scenedesmus opotiensis		1	1
2	Scenedesmus sps.	1	1	1
3	Scenedesmus quadricauda		1	
4	Cosmarium reniforme	1		
5	Cosmarium sps.	1	1	1
6	<i>Edorina</i> sps.		1	
7	Spirogyra sps.	1	1	1
8	Chlamydomonas sps.	1	1	1
9	Gonium sps.		1	
10	Uronema elongatum	1		
11	Cylindrocapses sps.		1	
12	<i>Mougeotia</i> sps.		1	
13	Ankistrodesmus sps.	1	1	1
14	<i>Zygnema</i> sps.		1	
15	Pandorina sps.	1		
16	Volvox sps.	1	1	1
17	Zygnema pectinata	1		

18	Ankristodesmus falcatus		1	
19	Stichococcus sps.		1	
20	Pediastrum duplex	1	1	1
21	Pediastrum simplex	1	1	1
22	Spirogyra communis	1	1	1
	Bacillariophyceae			
23	Pinnularia sps.	1	1	1
24	Bacillaria sps.	1	1	1
25	Navicula cuspidata	1		1
26	Navicula gracilis	1	1	1
27	Amphipleura sps.	1		1
28	Synedra sps.		1	1
29	Nitzschia sps.		1	1
30	<i>Melosira</i> sps.	1	1	1
31	Cocconesis sps.		1	1
32	Eunotia sps.		1	
33	<i>Tabellaria</i> sps.	1	1	1
34	Surirella sps.		1	
35	Gomphonema sps.		1	
36	Diatomella sps.		1	
	Cyanophyceae			
37	Phormidium mucicola	1		
38	Spirulina laxissima	1		1
39	Spirulina priceps	1		1
40	Chroococcus sps.	1	1	
41	Aphanocapsa banaresensis		1	
42	Microcystis acruginosa	1		
43	Microcystis robusta	1		
44	Microcystis viridis		1	
45	Synechocystis sps.	1	1	1
46	Rivularia sps.	1		
47	Nostoc sps.	1	1	1
48	Anabena sps.	1	1	
		30	36	24

Figure 22. Seasonal phytoplankton diversity in Chambal basin of M.P.

Figure 23. Group wise phytoplankton species composition at Chambal basin of M.P.

S.No	Species	Summer	Winter	Post
				monsoon
1	Chlorophyceae	1	1	1
1	Botryoceoceus bramii	1	1	1
2	Scenedesmus opotiensis	1	1	1
3	Clostarium sps.	1	1	1
4	Cosmarium reniforme			1
5	Spirogyra sps.		1	1
6	Chlamydomonas sps.	1		1
7	Gonium sps.	1		1
8	<i>Cylindrocapses</i> sps.	1		1
9	Haematococcus locusteris	1	1	1
10	Haemalocaccus sps.	1	1	
11	Microspora floccose		1	
12	Uronema elongatum		1	1
13	Sphaerocystis sps.	1	1	1
14	Staurastrum sps.	1	1	
15	Mougeotia sps.		1	1
16	Golenkinia sps.		1	1
17	Sehroederia sps.		1	1
18	Ankistrodesmus sps.	1	1	1
19	Zygnema sps.	1	1	
20	<i>Volvox</i> sps.	1	1	1
21	Zygnema pectinata	1		1
22	Ankristodesmus falcatus	1		
23	Pediastrum duplex	1	1	1
24	Pediastrum simplex	1	1	1
25	Oedogonium sps.	1	1	1
	Bacillariophyceae			
26	Pinnularia sps.	1	1	1
27	Navicula subrhiynchocephalus		1	1
28	Navicula cuspidata			1
29	Navicula gracilis	1		
30	Synedra sps.	1		
31	Nitzschia sps.	1	1	
32	Melosira sps.	1	1	
33	<i>Cyclotella</i> sps.	1	1	

 Table 33. Seasonal phytoplankton diversityin Betwa basin of M.P.

34	Eunotia sps.	1	1	
35	Tabellaria sps.	1	1	1
36	Biddulhhia laevis	1	1	
37	Xsteionella sps.	1	1	
38	Denticula sps.	1		1
39	Cylindrospermum sps.			1
40	Surirella sps.			1
41	Cymbella affinis	1		1
42	Gomphonema sps.	1		
43	Fragilaria sps.	1	1	
44	Asterionella sps.	1	1	
	Cyanophyceae			
45	Spirulina laxissima	1	1	1
46	Spirulina priceps	1	1	1
47	Chroococcus sps.	1	1	1
48	Aphanocapsa banaresensis	1	1	1
49	Microcystis acruginosa	1	1	
50	Microcystis robusta	1	1	
51	Microcystis marginata		1	1
52	Microcystis flosaquae	1	1	1
53	Microcystis pseudofilumentosa	1	1	1
54	Microcystis elongate	1		1
55	Microcystis viridis			1
56	<i>Rivularia</i> sps.	1		
57	Stigonema sps.	1	1	1
58	Ocilatoria limosa	1	1	1
59	Nodularia sps.	1	1	
60	Ocilatoria curviceps	1	1	
61	Nostoc sps.	1	1	1
62	Merismopedia sps.		1	1
63	Anabena sps.	1	1	1
		51	47	41

Figure 24. Seasonal phytoplankton diversity in Betwa basin of M.P.

Figure 25. Group wise Phytoplankton species composition in Betwa basin of M.P.

S.No	Species	Summer	Winter	Post
	Chlorenhauss			monsoon
1	Chlorophyceae	1	1	1
1	Clostarium sps.	1	1	1
2	Cosmarium reniforme	1	1	1
3	Edorina sps.		1	1
4	Spirogyra sps.	1	1	1
5	Chlamydomonas sps.	1		1
6	Pediastrum simplex	1		1
7	Padiastrum duplex	1		1
8	Pandorina sps.	1		1
9	Volvox sps.	1		1
10	Scenedesmus sps.	1	1	1
11	Cosmarium sps.		1	1
12	Zygnema pectinata		1	1
13	Zygnemaopsis sps.		1	
14	Desmidium sps.	1	1	
15	Tetrahedron sps.	1	1	
16	Mougeotia sps.	1	1	
17	Ankristodesmus falcatus	1	1	1
18	Oedogonium sps.	1		1
19	Spirogyra communis		1	
	Bacillariophyceae			
20	Pinnularia sps.		1	
21	Bacillaria sps.	1		1
22	Navicula subrhiynchocephalus	1	1	
23	Synedra sps.	1	1	1
24	<i>Cyclotella</i> sps.	1		1
25	Eunotia sps.		1	1
26	Cymbella affinis	1		
27	Gomphonema sps.	1		
28	<i>Fragilaria</i> sps.	1		
29	Asterionella sps	1	1	1
	Cyanophyceae			
30	Phormidium mucicola	1		
31	Spirulina laxissima	1	1	
32	Aphanocapsa banaresensis	1	1	1
33	Microcystis acruginosa	1	1	1
34	Synechocystis sps.		1	1

Table 34. Seasonal Phytoplankton diversity in Tapti basin of M.P.

Í	26	22	21
	40	44	41

Figure 26. Seasonal Phytoplankton diversity in Tapti basin of M.P.

Table 27. Group wise Phytoplankton species composition inTapti basin of M.P.

S.No	Species	Summer	Winter	Post
				monsoon
	Chlorophyceae			
1	Botryoceoceus bramii	1	1	
2	Clostarium sps.	1	1	1
3	Spirogyra sps.	1	1	1
4	<i>Volvox</i> sps.	1	1	1
5	Cosmarium sps.	1	1	1
6	Ulothrix sps.	1		1
7	Zygnema pectinata	1		
8	Desmidium sps.	1	1	1
9	Arthrodesmus sps.	1		
10	Microspora floccose	1	1	1
11	Pediastrum duplex	1	1	1
12	Pediastrum simplex	1	1	1
13	Oedogonium sps.	1	1	1
14	Spirogyra communis	1	1	
	Bacillariophyceae			
15	Pinnularia sps.		1	1
16	Navicula subrhiynchocephalus		1	1
17	Synedra sps.	1		1
18	Fragilaria sps.	1	1	1
19	Asterionella sps.	1		
	Cyanophyceae			
20	Phormidium mucicola	1	1	
21	Spirulina laxissima		1	
22	Microcystis acruginosa	1	1	1
23	Synechocystis sps.	1		1
		20	17	16

Table 35. Seasonal Phytoplankton diversity in Ken basin of M.P.

Figure 28. Seasonal Phytoplankton diversity in Ken basin of M.P.

S.No	Species	Summer	Winter	Post monsoon
	Chlorophyceae			
1	Botryoceoceus bramii		1	1
2	Scenedesmus opotiensis	1	1	
3	Scenedesmus sps.	1	1	1
4	Clostarium sps.	1	1	1
5	Cosmarium reniforme	1		
6	<i>Edorina</i> sps.		1	1
7	Spirogyra sps.	1	1	1
8	Gonium sps.		1	1
9	Zygnema sps.		1	
10	<i>Volvox</i> sps.	1	1	1
11	Cosmarium sps.	1		1
12	Zygnema pectinata		1	
13	Desmidium sps.	1	1	1
14	Mougeotia sps.	1	1	
15	Arthrodesmus sps.	1		
16	Stichococcus sps.	1		
17	Pediastrum duplex	1	1	1
18	Pediastrum simplex	1	1	1
19	Oedogonium sps.	1	1	1
20	Spirogyra communis	1	1	1
	Bacillariophyceae			
21	Pinnularia sps.	1	1	1
22	Bacillaria sps.	1	1	1
23	Navicula subrhiynchocephalus		1	
24	Nitzschia sps.	1		1
25	<i>Cyclotella</i> sps.	1		1
	Cyanophyceae			
26	Phormidium mucicola		1	
27	Spirulina laxissima	1		1
28	Chroococcus sps.	1		1
29	Aphanocapsa banaresensis		1	
30	Microcystis acruginosa	1	1	
31	Synechocystis sps.	1	1	1
		23	23	20

Table 36. Seasonal Phytoplankton diversity in Son basin of M.P.

Figure 30. Seasonal Phytoplankton diversity in Son basin of M.P.

Figure 31. Group wise Phytoplankton species composition at Son basin of M.P.

S.No	Species	Summer	Winter	Post
				monsoon
	Chlorophyceae			
1	Clostarium sps.	1	1	1
2	Spirogyra sps.	1	1	1
3	Ankistrodesmus		1	
4	Volvox sps.	1	1	1
5	Cosmarium sps.	1	1	1
6	Ulothrix sps.	1	1	1
7	Desmidium sps.	1	1	
8	Arthrodesmus sps.		1	1
9	Microspora floccose		1	
10	Pediastrum duplex	1	1	1
11	Pediastrum simplex	1	1	1
12	Spirogyra communis	1	1	
13	Scenedesmus quadricauda		1	
	Bacillariophyceae			
14	Pinnularia sps.	1	1	1
15	Bacillaria sps.	1	1	1
16	Navicula subrhiynchocephalus		1	
17	Synedra sps.		1	1
18	Eunotia sps.	1	1	
19	Tabellaria sps.	1	1	1
20	Fragilaria sps.	1		
	Cyanophyceae			
21	Spirulina laxissima	1		
22	Aphanocapsa banaresensis	1		1
23	Microcystis robusta	1	1	1
24	Microcystis marginata	1		
		18	20	14

Table 37. Seasonal Phytoplankton diversity in Rajgarh distt. of M.P.

Figure 32. Seasonal Phytoplankton diversity in Rajgarh Distt. of M.P.

Figure 33. Group wise Phytoplankton species composition at Rajgarh Distt. of M.P.

9.2. Zooplankton

The microscopic free swimming animal components of aquatic system are known as zooplankton. Zooplankton play an important role in aquatic food webs, both as a resource for consumers on higher trophic levels (including fish), and as conduit for packaging the organic material in the biological pump. Since they are typically of small size, zooplankton can respond relatively rapidly to increases in phytoplankton abundance.

During the Zooplanktonic study at different river basin of Madhya Pradesh a total of 75 species belonging to four major group's viz. *Rotifera, Cladocera, Ostracoda and Copepoda* were identified. *Rotifera* has been recorded as the most dominant group of zooplankton in the river basins represented by 32 species (42%) followed by *Cladocera* represented by 20 species (27%) *Copepoda* represented by 18 species (24%) and *Ostracoda* represented by 5 species (7%).

Zooplankton community of the different river basin showed a rich diversity. During the Zooplanktonic study at the river basin the higher diversity was observed in Betwa Basin comprises of 56 species followed by Chambal Basin comprises of 50 species, Seasonal ponds and river of Rajgarh District comprises of 38 species, Tapti basin comprises of 36 species, Sone Basin comprises of 31 species and Ken Basin comprises of 29 species,.

9.2.1. Zooplankton diversity in Chambal Basin

A total of 50 species of zooplankton has been recorded in the Chambal basin. The dominant group in the zooplankton community in the Chambal basin has been the *Copepoda* represented by 17 species (34%), followed closely by *Rotifera* represented 16 species (32%). The other groups of zooplankton include *Cladocera* comprises of 12 species (24%) and *Ostracoda* comprises of 5 species (10%). The higher diversity of zooplankton was observed during summer (40 species) season while lower diversity was observed during post monsoon (34 species) season and winter (34 species) season

Copepoda

During the study 17 species of Copepoda group was identified as the most dominant group of zooplankton. Not much variation was observed in summer, winter and post

monsoon seasonsThe maximum diversity of *Copepoda* was observed during summer (13 species) season followed by a gradual decreasing trend in winter (12 species) season, ultimately lowest to post monsoon (11species) season

Rotifera

During the period under study 16 species of *Rotifera* group was identified and represented as second dominant group of zooplankton. Not much variation was observed in summer, winter and post monsoon seasons. The maximum diversity of *Rotifera* was observed during summer (13 species) season followed by a gradual decreasing trend in post monsoon (12 species) season, ultimately lowest to winter (10 species) season.

Cladocera

During the study 12 species of *Cladocera* group was identified. Their higher diversity was observed in summer (10 species) season while in the winter and post monsoon season diversity was observed same (8 species).

Ostracoda

Ostracoda as a component of zooplankton was forth to *Copepoda in showing* prominence. The diversity of *Ostracoda* was observed during summer and winter season were same (4 species) while in the post monsoon season 3 species were recorded.

9.2.2. Zooplankton diversity in Betwa Basin

During the study the higher zooplankton community was recorded at the Betwa basin with a total of 56 species. The most dominant group was *Rotifera* represented by 27 species (48%). The other significant groups which are *Cladocera* comprise of 14 species (25%), *Copepoda* comprises of 11 species (20%), and *Ostracoda* comprises of 4 species (10%). The higher diversity of zooplankton was observed during summer (39 species) followed by a gradual decreasing trend in winter (35species) season, ultimately lowest to post monsoon (33species) season.

Rotifera

During the study 27 species *of Rotifera group* was identified as the most dominant group of zooplankton. Not much variation was observed in summer, winter and post monsoon seasons. Their higher diversity was observed in summer (19 species) season while in the winter and post monsoon season diversity was observed same (17 species).

Cladocera

During the period under study 14species of *Cladocera* group was identified and represented as second dominant group of zooplankton. The diversity of *Cladocera* was observed during summer and winter season were same (9 species) while in the post monsoon season 7 species were recorded.

Copepoda

Copepoda as a component of zoooplankton was third to Rotifera in showing prominence. During the study 11 species of *Copepoda* group was identified. Not much variation was observed in summer, winter and post monsoon seasons. Their higher diversity was recorded during summer (8 species) season followed by a gradual decreasing trend in post monsoon (7 species) season, ultimately lowest to winter (6 species) season.

Ostracoda

During the period under study 4 species of *Ostracoda* group was identified. The diversity of *Ostracoda* was observed during summer and winter season were same (3 species) while in the post monsoon season 2 species were recorded.

9.2.3. Zooplankton diversity in Tapti Basin

A total of 36 species of zooplankton has been recorded in the Chambal basin. The dominant group in the zooplankton community in the Tapti basin has been the *Rotifera* represented by 19 species (53%). The other significant groups which are *Cladocera* comprise of 7 species (19%), *Copepoda* comprises of 6 species (17%), and *Ostracoda* comprises of 4 species (11%). The higher diversity of zooplankton was observed during
post monsoon (24 species) followed by a gradual decreasing trend in winter (21species) season, ultimately lowest to summer (19species) season.

Rotifera

During the study 19 species *of Rotifera group* was identified as the most dominant group of zooplankton. Not much variation was observed in summer, winter and post monsoon seasons. The diversity of *Rotifera* was observed during winter and post monsoon season were same (13 species) while in the summer season 11 species were recorded.

Cladocera

During the period under study 7 species of *Cladocera* group was identified and represented as second dominant group of zooplankton. The maximum diversity of *Cladocera* was observed during post monsoon (6 species) season while the minimum was observed in the winter (2 species) season.

Copepoda

Copepoda as a component of zooplankton was third to Rotifera in showing prominence. During the study 6 species of *Copepoda* group was identified. Not much variation was observed in summer, winter and post monsoon seasons. Their higher diversity was recorded during winter (3 species) season followed by a gradual decreasing trend in summer (2 species) season, ultimately lowest to post monsoon (1 species) season.

Ostracoda

During the period under study 4 species of *Ostracoda* group was identified. The diversity of *Ostracoda* was observed during summer and winter season were same (3 species) while in the post monsoon season 4 species were recorded.

9.2.4. Zooplankton diversity in Ken Basin

The zooplankton community has been recorded in the Ken Basin with a total of 29 species. The most dominant group was *Rotifera* represented by 11 species (38%). The other significant groups which are *Copepoda* comprise of 9 species (31%), *Cladocera*

comprises of 6 species (21%), and *Ostracoda* comprises of 3 species (10%). The higher diversity of zooplankton was observed during winter and post monsoon season were same (24 species) while in the summer season 21 species were recorded..

Rotifera

During the study 11 species *of Rotifera group* was identified as the most dominant group of zooplankton. Not much variation was observed in summer, winter and post monsoon seasons. The diversity of *Rotifera* was observed during winter and post monsoon season were same (9 species) while in the summer season 8 species were recorded.

Copepoda

During the period under study 9 species of *Copepoda* group was identified and represented as second dominant group of zooplankton. Not much variation was observed in summer, winter and post monsoon seasons. The maximum diversity of *Copepoda* was observed during winter (9 species) season followed by a gradual decreasing trend in post monsoon (8 species) season, ultimately lowest to summer (7 species) season.

Cladocera

Cladocera as a component of zooplankton was third to *Rotifera in showing* prominence. During the study 6 species of *Cladocera* group was identified. Not much variation was observed in summer, winter and post monsoon seasons. Their higher diversity was recorded during summer (5 species) season while in the winter and post monsoon season diversity was observed same (4 species).

Ostracoda

During the period under study 3 species of *Ostracoda* group was identified. The maximum diversity of *Ostracoda* was observed during post monsoon (3 species) season followed by a gradual decreasing trend in winter (2 species) season, ultimately lowest to summer (1 species) season.

9.2.5. Zooplankton diversity in Son Basin

The zooplankton community of Son Basin comprises of 31 species. The most dominant group was *Rotifera* represented by 15 species (48%). The other significant groups which are *Cladocera* comprise of 7 species (23%), *Copepoda* comprises of 5 species (16%), and *Ostracoda* comprises of 4 species (13%). The higher diversity of zooplankton was observed during winter season (26 species) while in the summer season 23 species and post monsoon season 24 species were recorded.

Rotifera

During the study 15species *of Rotifera group* was identified as the most dominant group of zooplankton. The maximum diversity of *Rotifera* was observed during post monsoon (14 species) season while the minimum was observed in the summer (11 species) season.

Cladocera

During the period under study 7 species of *Cladocera* group was identified and represented as second dominant group of zooplankton. The maximum diversity of *Cladocera* was observed during winter (6 species) season while in the summer and post monsoon season diversity was observed same (4 species).

Copepoda

Copepoda as a component of zooplankton was third to *Rotifera in showing* prominence. During the study 5 species of *Copepoda* group was identified. No variation was observed in summer, winter and post monsoon seasons. The diversity of *Copepoda* was recorded during winter, summer and post monsoon season were same (4 species)

Ostracoda

During the period under study 4 species of *Ostracoda* group was identified. Not much variation was observed in summer, winter and post monsoon seasons. Their higher diversity was recorded during summer (4 species) season followed by a gradual decreasing trend in winter (3 species) season, ultimately lowest to post monsoon (2 species) season.

9.2.6. Zooplankton diversity in Rajgarh District

The zooplankton community has been recorded in the Seasonal ponds and river of Rajgarh District comprises of 38 species. The most dominant group was *Rotifera* represented by 18 species (47%). The other significant groups which are *Cladocera* comprise of 9 species (24%), *Copepoda* comprises of 8 species (21%), and *Ostracoda* comprises of 3 species (8%). The higher diversity of zooplankton was observed during post monsoon season (28 species) while in the summer and post winter season diversity was observed same (27species).

Rotifera

During the study 18 species *of Rotifera group* was identified as the most dominant group of zooplankton. Not much variation was observed in summer, winter and post monsoon seasons. The maximum diversity of *Rotifera* was observed during winter (14 species) season followed by a gradual decreasing trend in summer (13 species) season, ultimately lowest to post monsoon (12 species) season.

Cladocera

During the period under study 9 species of *Cladocera* group was identified and represented as second dominant group of zooplankton. The maximum diversity of *Cladocera* was observed during post monsoon (8 species) season followed by a gradual decreasing trend in winter (6 species) season, ultimately lowest to summer (5 species) season

Copepoda

Copepoda as a component of zooplankton was third to Rotifera in showing prominence. During the study 8 species of Copepoda group was identified. No variation was observed in summer, winter and post monsoon seasons. The maximum diversity of Copepoda was observed during summer (6 species) season while in the winter and post monsoon season diversity was observed same (5 species).

Ostracoda

During the period under study 3 species of *Ostracoda* group was identified. Not much variation was observed in summer, winter and post monsoon seasons. The diversity of *Ostracoda* was observed during summer and post monsoon season were same (3 species) while in the winter season 2 species were recorded.

S.No	Species	Chambal Basin	Betwa basin	Tapti basin	Ken Basin	Sone Basin	Rajgarh Distt.
	Zooplankton						
	Rotifera						
1	Lecane bulla		1	1		1	
2	Lecane luna		1	1			
3	Keratella quadrata	1	1	1	1	1	
4	Keratella tropica	1	1	1	1	1	1
5	Keratella lengi	1		1			1
6	Keratella cochleris	1	1	1		1	1
7	Polyarthra vulgaris	1					
8	Filinia longiseta	1	1				
9	Monostyla spp.	1	1				1
10	Asplanchna brightwellii	1					
11	Trichotria spp.	1	1		1	1	1
	Brachionus			1			
12	quardridentatus	1	1			1	
13	Brachionus calyciflorus	1	1	1			1
14	Brachionus falcatus	1	1	1	1		1
15	Brachionus patulus		1				
16	Brachionus caudatus		1			1	1
17	Brachionus pterodinodes		1				
18	Brachionus diversiarnis		1	1		1	1
19	Brachionus rubens	1	1	1	1		
20	Brachionus bidendata		1			1	
21	Brachionus angularis		1	1			
22	Brachionus forficula	1	1	1		1	1
23	Philodina spp.	1	1		1		1
24	Anuaeopsis fissia			1	1	1	1
25	Asplanchnopus multiceps		1	1			1

Table 38. Zooplankton diversity in different river basins of M.P.

26	Notholca acuminata	1	1	1		1	
27	Chromogaster ovalis		1	1	1		1
28	Synchaeta pectinata		1		1	1	1
29	Polyarthyra vulgaris		1	1	1		1
30	Scaridium longicaudum					1	1
31	Platyias quadricornis		1	1	1		1
32	Asplanchna brightwelli		1			1	
	Cladocera						
33	Daphnia carinata	1	1			1	1
34	Daphnia oblusa		1	1			
35	Daphnia lumhaltyi		1	1	1		
36	Daphnia pulex	1					1
37	Daphnia retrocurva		1				
38	Daphnia similes		1				
49	Moindaphuinia		1		1		1
40	Daphnia lumholtzi	1					
41	Alonella dentifera	1			1		
42	Alona quatata	1	1			1	1
43	Alona quaffinis	1	1		1		
44	Alona quandrangularis	1			1		
45	Ceriodaphnia spp.	1	1	1		1	1
46	Bosmina longirostris	1	1	1			
47	Macrothrix sp.		1	1		1	1
48	Daphnossoma birgei	1	1				
49	Moina micrara		1			1	1
50	Simocephalus sp.	1	1	1			
51	Leydigia sp.				1	1	1
52	Scapholeberis sp.	1		1		1	1
	Ostracoda						
53	Cypris obensa	1	1	1	1	1	1
54	Cypris candona	1	1	1	1		1
55	Stenocypris sp.	1	1			1	
56	Heterocypris sp.	1		1	1	1	1
57	Nauplius sp.	1	1	1		1	
	Copepoda						
58	Ectocyclops phaleratus	1				1	1
59	Ectocyclops serrulatus	1	1			1	
60	Cyclops vicinus	1	1	1	1		1
61	Microcyclops varicans	1	1				

62	Macrocyclops distinctus	1	1		1		
63	Mesoocyclops hyalinus	1					1
64	Mesocyclops leuckarti	1	1				
65	Ergasilus spp.	1	1		1	1	
66	Allodiaptomus raio	1					
67	Heliodiaptomus vidus	1	1		1		1
68	Paradiaptomus greeni	1		1			
69	Synecella calanoides	1	1				1
70	Argulus japonicus	1			1		
71	Diaptomus spp.	1	1	1		1	1
72	Nauplius larvae	1		1	1		
73	Eucyclops sp.	1	1	1	1		
74	Neodiaptomus sp.		1	1	1	1	1
75	Cletocampus sp.	1			1		1
		50	56	36	29	31	38

Figure 34. Zooplankton diversity in different river basins of M.P.

Figure 35. Groupwise Zooplankton species composition at different river basins of M.P.

Table 39. Seasonal Zooplankton diversity in Chambal basin of M.P.

S.No	Species	Summer	Winter	Post monsoon
	Zooplankton			
	Rotifera			
1	Keratella quadrata	1	1	1
2	Keratella tropica	1	1	1
3	Keratella lengi	1		1
4	Keratella cochleris		1	1
5	Polyarthra vulgaris	1	1	
6	Filinia longiseta	1		1
7	Monostyla spp.	1	1	
8	Asplanchna brightwellii		1	1
9	Trichotria spp.	1		1
10	Brachionus quardridentatus	1	1	1
11	Brachionus calyciflorus		1	
12	Brachionus falcatus	1		1
13	Brachionus rubens	1		1
14	Brachionus forficula	1	1	
15	Philodina spp.	1	1	1
16	Notholca acuminata	1		1

	Cladocera			
17	Daphnia carinata	1	1	1
18	Daphnia pulex	1		1
19	Daphnia lumholtzi	1	1	1
20	Alonella dentifera	1		
21	Alona quatata		1	1
22	Alona quaffinis	1	1	
23	Alona quandrangularis		1	1
24	Ceriodaphnia spp.	1	1	1
25	Bosmina longirostris	1		
26	Daphnossoma birgei	1	1	
27	Simocephalus sp.	1		1
28	Scapholeberis sp.	1	1	1
	Ostracoda			
29	Cypris obensa	1	1	
30	Cypris candona	1	1	1
31	Stenocypris sp.		1	1
32	Heterocypris sp.	1		1
33	Nauplius sp.	1	1	
	Copepoda			
34	Ectocyclops phaleratus	1		1
35	Ectocyclops serrulatus	1	1	1
36	Cyclops vicinus	1	1	1
37	Microcyclops varicans		1	1
38	Macrocyclops distinctus	1		
39	Mesoocyclops hyalinus		1	1
40	Mesocyclops leuckarti	1	1	
41	Ergasilus spp.	1		
42	Allodiaptomus raio	1	1	1
43	Heliodiaptomus vidus	1		1
44	Paradiaptomus greeni	1	1	1
45	Synecella calanoides		1	
46	Argulus japonicus	1	1	1
47	Diaptomus spp.	1		
48	Nauplius larvae		1	1
49	Eucyclops sp.	1	1	1
50	Cletocampus sp.	1	1	
		40	34	34

\

Figure 36. Seasonal Zooplankton diversity in Chambal basin of M.P.

Figure 37. Group-wise Zooplankton species composition in Chambal basin of M.P.

S.No	Species	Summer	Winter	Post monsoon
	Zooplankton			
	Rotifera			
1	Lecane bulla	1	1	
2	Lecane luna	1	1	
3	Keratella quadrata	1	1	1
4	Keratella tropica	1		1
5	Keratella cochleris	1		1
6	Filinia longiseta		1	1
7	Monostyla spp.		1	
8	Trichotria spp.	1	1	
9	Brachionus quardridentatus		1	1
10	Brachionus calyciflorus	1		1
11	Brachionus falcatus	1	1	
12	Brachionus patulus	1	1	1
13	Brachionus caudatus		1	
14	Brachionus pterodinodes		1	1
15	Brachionus diversiarnis	1	1	1
16	Brachionus rubens	1		1
17	Brachionus bidendata	1		1
18	Brachionus angularis	1	1	
19	Brachionus forficula	1	1	1
20	Philodina spp.	1		1
21	Asplanchnopus multiceps	1		1
22	Notholca acuminata			
23	Chromogaster ovalis	1	1	1
24	Synchaeta pectinata	1	1	1
25	Polyarthyra vulgaris		1	
26	Platyias quadricornis	1		
27	Asplanchna brightwelli			1
	Cladocera			
28	Daphnia carinata	1	1	
29	Daphnia oblusa	1		1
30	Daphnia lumhaltyi	1	1	1
31	Daphnia retrocurva	1		
32	Daphnia similes	1	1	1

Table 40. Seasonal Zooplankton diversity in Betwa basin of M.P.

33	Moindaphuinia		1	
34	Alona quatata	1		1
35	Alona quaffinis		1	1
36	Ceriodaphnia spp.	1	1	
37	Bosmina longirostris		1	1
38	Macrothrix sp.		1	1
39	Daphnossoma birgei	1		
40	Moina micrara			
41	Simocephalus sp.	1	1	
	Ostracoda			
42	Cypris obensa	1	1	1
43	Cypris candona		1	
44	Stenocypris sp.	1		
45	Nauplius sp.	1	1	1
	Copepoda			
46	Ectocyclops serrulatus	1	1	
47	Cyclops vicinus	1	1	1
48	Microcyclops varicans	1	1	1
49	Macrocyclops distinctus		1	
50	Mesocyclops leuckarti	1		
51	Ergasilus spp.			1
52	Heliodiaptomus vidus	1		1
53	Synecella calanoides	1	1	
54	Diaptomus spp.	1		1
55	Eucyclops sp.			1
56	Neodiaptomus sp.	1	1	1
		39	35	33

Figure 38. Seasonal Zooplankton diversity in Betwa basin of M.P.

Figure 39. Group wise Zooplankton species composition in Betwa basin of M.P.

S.No	Species	Summer	Winter	Post monsoon
	Zooplankton			
	Rotifera			
1	Lecane bulla	1	1	
2	Lecane luna			1
3	Keratella quadrata			1
4	Keratella tropica	1	1	
5	Keratella lengi	1		1
6	Keratella cochleris	1	1	1
7	Brachionus quardridentatus	1	1	1
8	Brachionus calyciflorus	1	1	
9	Brachionus falcatus		1	1
10	Brachionus diversiarnis		1	1
11	Brachionus rubens			1
12	Brachionus angularis			1
13	Brachionus forficula	1	1	
14	Anuaeopsis fissia	1	1	1
15	Asplanchnopus multiceps		1	1
16	Notholca acuminata	1		
17	Chromogaster ovalis	1	1	1
18	Polyarthyra vulgaris	1	1	
19	Platyias quadricornis		1	1
	Cladocera			
20	Daphnia oblusa			1
21	Daphnia lumhaltyi	1		1
22	Ceriodaphnia spp.			1
23	Bosmina longirostris		1	1
24	Macrothrix sp.			1
25	Simocephalus sp.	1		1
26	Scapholeberis sp.	1	1	
	Ostracoda			
27	Cypris obensa	1	1	
28	Cypris candona	1	1	
29	Heterocypris sp.		1	
30	Nauplius sp.			1

Table 41. Seasonal Zooplankton diversity in Tapti basin of M.P.

	Copepoda			
31	Cyclops vicinus		1	
32	Paradiaptomus greeni	1	1	
33	Diaptomus spp.	1		1
34	Nauplius larvae	1	1	1
35	Eucyclops sp.			1
36	Neodiaptomus sp.			1
		19	21	24

Figure 40. Seasonal Zooplankton diversity in Tapti basin of M.P.

Figure 41. Group wise Zooplankton species composition in Tapti basin of M.P.

S.No	Species	Summer	Summer Winter	
	Zooplankton			
	Rotifera			
1	Keratella quadrata	1	1	1
2	Keratella tropica	1	1	1
3	Trichotria spp.	1	1	1
4	Brachionus falcatus	1	1	1
5	Brachionus rubens		1	1
6	Philodina spp.		1	1
7	Anuaeopsis fissia	1		
8	Chromogaster ovalis	1	1	1
9	Synchaeta pectinata	1	1	
10	Polyarthyra vulgaris		1	1
11	Platyias quadricornis	1		1
	Cladocera			
12	Daphnia lumhaltyi	1		1
13	Moindaphuinia	1	1	
14	Alonella dentifera		1	1
15	Alona quaffinis	1	1	
16	Alona quandrangularis	1		1
17	Leydigia sp.	1	1	1
	Ostracoda			
18	Cypris obensa		1	1
19	Cypris candona		1	1
20	Heterocypris sp.	1		1
	Copepoda			
21	Cyclops vicinus	1	1	1
22	Macrocyclops distinctus	1	1	1
23	Ergasilus spp.		1	1
24	Heliodiaptomus vidus	1	1	1
25	Argulus japonicus	1	1	
26	Nauplius larvae	1	1	1
27	Eucyclops sp.	1	1	1
28	Neodiaptomus sp.		1	1
29	Cletocampus sp.	1	1	1
	^ ^ ^	21	24	24

Table 42. Seasonal Zooplankton diversity in Ken basin of M.P.

Figure 42. Seasonal Zooplankton diversity in Ken basin of M.P.

Figure 43. Group wise Zooplankton species composition in Ken basin of M.P.

S.No	Species	Summer	Winter	Post monsoon
	Zooplankton			
	Rotifera			
1	Lecane bulla	1	1	1
2	Keratella quadrata	1	1	1
3	Keratella tropica	1	1	1
4	Keratella cochleris	1	1	1
5	Trichotria spp.	1	1	1
6	Brachionus quardridentatus		1	1
7	Brachionus caudatus	1	1	1
8	Brachionus diversiarnis	1		1
9	Brachionus bidendata		1	1
10	Brachionus forficula	1	1	1
11	Anuaeopsis fissia	1		1
12	Notholca acuminata	1	1	1
13	Synchaeta pectinata		1	1
14	Scaridium longicaudum		1	1
15	Asplanchna brightwelli	1	1	
	Cladocera			
16	Daphnia carinata	1		1
17	Alona quatata		1	
18	Ceriodaphnia spp.	1	1	1
19	Macrothrix sp.	1	1	1
20	Moina micrara		1	1
21	Leydigia sp.		1	
22	Scapholeberis sp.	1	1	
	Ostracoda			
23	Cypris obensa	1		
24	Stenocypris sp.	1	1	
25	Heterocypris sp.	1	1	1
26	Nauplius sp.	1	1	1
	Copepoda			
27	Ectocyclops phaleratus	1		1
28	Ectocyclops serrulatus	1	1	1
29	Ergasilus spp.		1	
31	Diaptomus spp.	1	1	1
32	Neodiaptomus sp.	1	1	1
		23	26	24

Table 43. Seasonal Zooplankton diversity in Son basin of M.P.

Figures 44. Seasonal Zooplankton diversity in Son basin of M.P.

Figure 45. Groupwise Zooplankton species composition at Son basin of M.P.

S.No	Species	Summer	Winter	Post monsoon
	Zooplankton			
	Rotifera			
1	Keratella tropica	1	1	1
2	Keratella lengi	1	1	1
3	Keratella cochleris	1	1	
4	Monostyla spp.	1	1	1
5	Trichotria spp.	1	1	1
6	Brachionus calyciflorus	1	1	
7	Brachionus falcatus	1		1
8	Brachionus caudatus		1	1
9	Brachionus diversiarnis		1	1
10	Brachionus forficula	1	1	1
11	Philodina spp.			
12	Anuaeopsis fissia	1		
13	Asplanchnopus multiceps	1	1	
14	Chromogaster ovalis		1	1
15	Synchaeta pectinata	1	1	
16	Polyarthyra vulgaris	1	1	1
17	Scaridium longicaudum	1		1
18	Platyias quadricornis		1	1
	Cladocera			
19	Daphnia carinata	1	1	1
20	Daphnia pulex		1	1
21	Moindaphuinia	1		1
22	Alona quatata		1	1
23	Ceriodaphnia spp.		1	1
24	Macrothrix sp.	1		
25	Moina micrara	1		1
26	Leydigia sp.		1	1
27	Scapholeberis sp.	1	1	1
	Ostracoda			
28	Cypris obensa	1		1
29	Cypris candona	1	1	1
30	Heterocypris sp.	1	1	1
	Copepoda			

Table 44. Seasonal Zooplankton diversity in Rajgarh Distt. of M.P.

31	Ectocyclops phaleratus		1	
32	Cyclops vicinus	1	1	
33	Mesoocyclops hyalinus		1	1
34	Heliodiaptomus vidus	1		1
35	Synecella calanoides	1	1	1
36	Diaptomus spp.	1		1
37	Neodiaptomus sp.	1		
38	Cletocampus sp.	1	1	1
		27	27	28

Figure 46. Seasonal Zooplankton diversity in Rajgarh Distt. of M.P.

Figure 47. Group wise species composition in Rajgarh Distt. of M.P.

10. Benthic community

The term benthos denotes the whole assemblage of organisms dwelling at the bottom, which show a marked diversity depending upon the change in the depths and properties of the sediments. Most of the aquatic organisms are detritivores and form an important link in the food chain on account for higher organisms in the food web. Macroinvertibrates assemblages are good indicators of localized condition. Benthic Macroinvertibrates assemblages are made up of species that constitutes a broad range of trophic levels and pollution tolerances, thus providing strong information for interpreting cumulative effect.

The invertebrates that inhabit the benthic zone are numerically dominated by small species and are species rich compared to the zooplankton of the open water. They include Crustaceans (e.g. crabs, crayfish, and shrimp), molluscs (e.g. clams and snails), and numerous types of insects. These organisms are mostly found in the areas of macrophyte growth, where the richest resources, highly oxygenated water, and warmest portion of the ecosystem are found. The structurally diverse macrophyte beds are important sites for the accumulation of organic matter, and provide an ideal area for colonizationts.

During the Benthic study at different river basin of Madhya Pradesh a total of 70 species belonging to seven major group's viz. *Protozoa, Oligochaeta, Hirudinea, Diptera, Coleoptera, Ephemeroptera and Mollusca* were identified. *Mollusca* has been recorded as the most dominant group of zoobenthos in the river basins represented by 38 species (54%) followed by *Protozoa* represented by 7 species (10%). *Diptera* represented by 7 species (10%), *Coleoptera* represented by 7 species (10%), *Coleoptera* represented by 7 species (10%), *Oligochaeta* represented by 6 species (9%), *Ephemeroptera* represented by 3 species (4%) and *Hirudinea* represented by 2 species (3%)

Benthos community of the different river basin showed a rich diversity. During the zoobenthos study at the river basin the higher diversity was observed in Chambal Basin comprises of 55 species followed by Betwa Basin comprises of 37 species, Tapti basin

comprises of 20 species, Sone Basin comprises of 18 species, Seasonal ponds and river of Rajgarh District comprises of 16 species and Ken Basin comprises of 16 species.

10.1. Benthic diversity in Chambal Basin

Rich diversity in the species of benthos has been recorded in the Chambal Basin with a total of 55 species. The most dominant group was *Mollusca* represented by 29 species (53%), followed by *Coleoptera comprises* with 7 species (13%), *Diptera* represented by 6 species (11%). Other significant groups which are Protozoa and *Oligochaeta* independently comprises of 4 species (7%), *Ephemeroptera* represented by 3 species (5%), *Hirudinea represented* by 2 species (4%). The higher diversity of benthos was observed during summer (43 species) season followed by a gradual decreasing trend in winter (42 species) season while lower diversity was observed during post monsoon (22 species) season.

Mollusca

During the study 29 species *of Mollusca group* was identified as the most dominant group of benthos. The maximum diversity of *Mollusca* was observed during Summer(23 species) season while the minimum was observed in the Post monsoon (12 species) season.

Coleoptera

During the period under study 7 species of *Coleoptera* group was identified and represented as second dominant group of benthos. Not much variation was observed in summer, winter and post monsoon season. The diversity of *Coleoptera* was observed during summer and winter season were same (5 species) while in the post monsoon season 4 species were recorded.

Diptera

Diptera as a component of benthos was third to *Mollusca in showing* prominence. During the study 6 species of *Diptera* group was identified. The maximum diversity of *Diptera*

was observed during winter (5 species) season while the minimum was observed in the Post monsoon (2 species) season.

10.2. Benthic community in Betwa Basin

During the study the benthos community was recorded at the Betwa basin with a total of 37 species. The most dominant group was *Mollusca* represented by 36 species (64%), followed by *Diptera* and *Oligochaeta* independently comprises of 5species (9%).Other significant groups which are *Coleoptera* and *Ephemeroptera* separately comprises of 3 species (5%), *Protozoa* and *Hirudinea* independently comprises of 2 species (4%), The higher diversity of benthos was observed during winter (29 species) season followed by a gradual decreasing trend in summer (28 species) season while lower diversity was observed during post monsoon (20 species) season.

Mollusca

During the study 36 species *of Mollusca group* was identified as the most dominant group of benthos. The maximum diversity of *Mollusca* was observed during summer (13 species) season while the minimum was observed in the Post monsoon (9 species) season.

Diptera

During the study 5 species of *Diptera* group was identified. The diversity of *Diptera* was observed during winter and post monsoon season were same (5 species) while in the summer season 3 species were recorded.

Oligochaeta

During the study 5 species of *Oligochaeta* group was identified. The diversity of *Oligochaeta* was observed during summer and winter season were same (4 species) while in the post monsoon season 2 species were recorded.

10.3. Benthic diversity in Tapti Basin

During the study the benthos community was recorded at the Tapti basin with a total of 20 species. The most dominant group was *Mollusca* represented by 5 species (25%), followed by *Protozoa* and *Coleoptera* independently comprises of 4 species (20%).Other

significant groups which are *Diptera* comprises of 3 species (15%), *Oligochaeta* comprises of 2 species (10%), *Hirudinea* and *Ephemeroptera* independently comprises of 1 species (5%), The higher diversity of benthos was observed during summer (18 species) season followed by a gradual decreasing trend in winter (16 species) season while lower diversity was observed during post monsoon (12 species) season.

10.4. Benthic diversity in Ken Basin

During the study the benthos community was recorded at the Ken basin with a total of 16 species. The most dominant group was *Mollusca and Protozoa* independently comprises of 4 species (27%) followed by *Diptera* comprises of 3 species (20%), *Coleoptera* and *Oligochaeta* separately comprises of 2 species (13%). The higher diversity of benthos was observed during winter (13 species) season followed by a gradual decreasing trend in summer (12 species) season while lower diversity was observed during post monsoon (10 species) season.

10.5. Benthic diversity in Son Basin

During the study the benthos community was recorded at the Son basin with a total of 18 species. The most dominant group was *Mollusca* represented by 5 species (29%), followed by *Diptera* comprises of 4 species (23%).Other significant groups which are *Protozoa* comprises of 3 species (18%), *Oligochaeta* and *Coleoptera* independently comprises of 2 species (12%), and *Ephemeroptera* comprises of 1 species (6%).The higher diversity of benthos was observed during winter (17species) season while the minimum was observed in the Post monsoon (10 species) season.

10.6. Benthic diversity in Rajgarh District

During the study the benthos community was recorded at the Seasonal ponds and river of Rajgarh District with a total of 16 species. The most dominant group was *Mollusca* represented by 10 species (63%), followed by *Diptera* comprises of 3 species (19%). Other significant groups which are *Protozoa* comprises of 2 species (12%), and *Coleoptera* comprises of 1 species (6%). The higher diversity of benthos was observed

during winter (15 species) season while in the summer and post monsoon season diversity was observed same (13 species).

S.No	Species	Chambal Basin	Betwa basin	Tapti basin	Ken Basin	Sone Basin	Rajgarh District
	Microzoobenthic Organisms						
	Protozoa						
1	<i>Diffugia</i> sps.	1	1	1	1	1	
2	Arcella sps.			1	1	1	1
3	Neballa sps.				1		
4	Actinophrys sps.	1					
5	<i>Voticella</i> sps.	1	1	1			
6	Colpodium sps.	1		1	1	1	1
7	<i>Opercularia</i> sps.				1		
	Macrozoobenthic organism						
	Oligochaeta						
8	Nais communis	1	1				
9	Lumbricus sps.		1				
10	<i>Stylaria</i> sps.		1	1	1		
11	Pristina menori	1					
12	Tubifex tubifex	1	1	1		1	
13	Branchiura sowerbyi	1	1		1	1	
	Hirudinea						
14	Glossiphonia complanta	1	1	1		1	
15	Barbonia sps.	1	1				
	Diptera						
16	Penteneura sps.	1		1	1		1
17	Tantytarsus sps.		1			1	
18	Tabanus sps.	1	1				
19	Culicoides sps.	1	1	1		1	
20	Chironomids tentanus	1	1	1	1	1	1
21	<i>Tripula</i> sps.	1					1
22	Palpomyia sps.	1	1		1	1	
	Coleoptera						
23	Berosus sps.	1					

24	Enochrus sps.	1	1	1	1		1
25	Agabinus sps.	1		1		1	
26	Gyninus sps.	1	1				
27	Psephenus sps.	1	1				
28	Dineutus indicus	1		1			
29	Hydrophilusss sps.	1		1	1	1	
	Ephemeroptera						
30	Paraleptophalebia sps.	1	1				
31	Stenonema sps.	1	1	1		1	
32	Hepa sps.	1	1				
	Mollusca						
33	Vivipara sps.	1	1	1	1	1	1
34	<i>Lymnea</i> sps.	1	1	1	1	1	1
35	Lymnaea acuminate		1				
36	Lymnaea surnhoei	1			1		1
37	Lymnaea luteola		1				
38	Lymnaea andersonia		1				
39	Digoniostoma sps.	1	1				
40	Digoniostoma textum	1					
41	Thiara sps.	1	1	1		1	
42	Stenothyra solute	1					
43	Stenothyra minima	1	1				
44	Stenothyra atamus	1					
45	Paludomus neritoides	1					
46	Paludomus conica	1					
47	Paludomus acuta	1					
48	Stenomelania punctata		1				
49	Thaira maimoaringia	1					
50	Thaira melaloides	1					
51	Brotia costula	1	1				
52	Thaira scabra	1	1				1
53	Thaira pyramis		1				1
54	Mainwaringia paludomoidea						1
55	Thaira tuberculata						1
56	Thaira scabra						1
57	Corbicula sps.	1	1	1	1	1	
58	Parreysia favidens	1					
59	Parreysia radiatula	1		1			
60	Indoplanorbis exustus	1					

61	Planorbidea sps.	1	1			1	
62	Iravadia annandalei	1					
63	Scaphula deltae	1	1				
64	Scaphula celox	1					
65	Sulcospira huegeli	1					
66	Bellamya variata	1	1				
67	Bellamya micron	1					
68	Tcia theobaldi	1					
69	Hydrobioides nana	1	1				1
70	Forcipomypia sps.						1
		55	37	20	16	18	16

Figure 48. Benthic community in different river basins of M.P.

Figure 49. Group wise Benthic species composition in different basins of M.P.

S.No	Species	Summer	Winter	Post monsoon
	Microzoobenthic Organisms			
	Protozoa			
1	<i>Diffugia</i> sps.	1	1	1
2	Actinophrys sps.		1	
3	<i>Voticella</i> sps.	1	1	
4	Colpodium sps.	1		
	Macrozoobenthic organism			
	Oligochaeta			
5	Nais communis	1	1	1
6	Pristina menori		1	
7	Tubifex tubifex	1	1	
8	Branchiura sowerbyi	1	1	1
	Hirudinea			
9	Glossiphonia complanta	1	1	
10	Barbonia sps.	1		
	Diptera			

11	Penteneura sps.		1	
12	Tabanus sps.	1	1	1
13	Culicoides sps.	1	1	1
14	Chironomids tentanus	1		
15	<i>Tripula</i> sps.	1	1	
16	Palpomyia sps.		1	
	Coleoptera			
17	Berosus sps.	1	1	1
18	Enochrus sps.	1	1	1
19	Agabinus sps.		1	1
20	Gyninus sps.	1		
21	Psephenus sps.	1		
22	Dineutus indicus	1	1	1
23	Hydrophilusss sps.		1	
	Ephemeroptera			
24	Paraleptophalebia sps.	1	1	
25	Stenonema sps.	1		
26	<i>Hepa</i> sps.	1	1	1
	Mollusca			
27	<i>Vivipara</i> sps.	1	1	1
28	<i>Lymnea</i> sps.	1	1	1
29	Lymnaea surnhoei	1	1	
30	Digoniostoma sps.	1	1	
31	Digoniostoma textum	1	1	
32	<i>Thiara</i> sps.	1	1	
33	Stenothyra solute	1	1	
34	Stenothyra minima	1	1	1
35	Stenothyra atamus	1		1
36	Paludomus neritoides		1	1
37	Paludomus conica		1	
38	Paludomus acuta	1		
39	Thaira maimoaringia	1	1	
40	Thaira melaloides	1		1
41	Brotia costula		1	
42	Thaira scabra		1	
43	Corbicula sps.	1	1	1
44	Parreysia favidens	1		1
45	Parreysia radiatula	1		1
46	Indoplanorbis exustus.	1	1	

47	Planorbidea sps.	1	1	
48	Iravadia annandalei		1	
49	Scaphula deltae	1	1	
50	Scaphula celox		1	
51	Sulcospira huegeli	1	1	
52	Bellamya variata	1	1	
53	Bellamya micron	1		1
54	Tcia theobaldi	1	1	1
55	Hydrobioides nana	1		1
		43	42	22

Figure 50. Seasonal benthic diversity in Chambal basin of M.P.

Figure 51. Group wise benthic species composition in Chambal basin of .P.

Table 47. Seasonal benche arversity in Detwa basin of Min.	Table 47.	Seasonal	benthic	diversity	in Betwa	basin of M.P.
--	-----------	----------	---------	-----------	----------	---------------

S.No	Species	Summer	Winter	Post monsoon
	Microzoobenthic Organisms			
	Protozoa			
1	<i>Diffugia</i> sps.	1	1	1
2	<i>Voticella</i> sps.	1	1	
	Macrozoobenthic organism			
	Oligochaeta			
3	Nais communis	1	1	1
4	Lumbricus sps.	1	1	
5	Stylaria spp.		1	
6	Tubifex tubifex	1	1	1
7	Branchiura sowerbyi	1		
	Hirudinea			
8	Glossiphonia complanta	1	1	
9	Barbonia sps.	1	1	1
	Diptera			
10	Tantytarsus sps.	1	1	1
11	Tabanus sps.		1	1

12	Culicoides sps.	1	1	1
13	Chironomids tentanus	1	1	1
14	Palpomyia sps.		1	1
	Coleoptera			
15	Enochrus sps.	1		1
16	Gyninus sps.	1		
17	Psephenus sps.	1		
	Ephemeroptera			
18	Paraleptophalebia sps.		1	
19	Stenonema sps.		1	1
20	Hepa sps.		1	
	Mollusca			
21	<i>Vivipara</i> sps.	1	1	1
22	<i>Lymnea</i> sps.	1	1	1
23	Lymnaea acuminate	1	1	
24	Lymnaea luteola	1		
25	Lymnaea andersonia	1	1	
26	Digoniostoma sps.	1	1	1
27	Thiara sps.	1	1	
28	Stenothyra minima	1		
29	Stenomelania punctata		1	
30	Brotia costula	1		1
31	Thaira scabra	1	1	1
32	Thaira pyramis		1	1
33	Corbicula sps.	1	1	1
34	Planorbidea sps.		1	1
35	Scaphula deltae	1		
36	Bellamya variata	1	1	
37	Hydrobioides nana	1	1	1
		28	29	20

Figure 53. Groupwise benthic species composition in Betwa basin of M.P.

S.No	Species	Summer	Winter	Post monsoon
	Microzoobenthic Organisms			
	Protozoa			
1	<i>Diffugia</i> sps.	1	1	1
2	Arcella sps.	1	1	1
3	<i>Voticella</i> sps.	1	1	1
4	Colpodium sps.	1	1	1
	Macrozoobenthic organism			
	Oligochaeta			
5	<i>Stylaria</i> sps.	1	1	
6	Tubifex tubifex	1	1	1
	Hirudinea			
7	Glossiphonia complanta	1		
	Diptera			
8	Penteneura sps.		1	
9	Culicoides sps.	1	1	1
10	Chironomids tentanus	1	1	1
	Coleoptera			
11	Enochrus sps.	1		
12	Agabinus sps.		1	
13	Dineutus indicus	1	1	
14	Hydrophilusss sps.	1		
	Ephemeroptera			
15	Stenonema sps.	1	1	1
	Mollusca			
16	Vivipara sps.	1	1	1
17	<i>Lymnea</i> sps.	1	1	1
18	<i>Thiara</i> sps.	1	1	
19	Corbicula sps.	1	1	1
20	Parreysia radiatula	1		1
		18	16	12

Table 48. Seasonal Benthic diversity in Tapti basin of M.P.

Figure 54. Seasonal Benthic diversity in Tapti basin of M.P.

Figure 55. Group wise Benthic species composition in Tapti basin of M.P.

S.No	Species	Summer	Winter	Post monsoon
	Microzoobenthic Organisms			
	Protozoa			
1	Arcella sps.	1	1	
2	Neballa sps.	1	1	1
3	Colpodium sps.	1	1	1
4	Opercularia sps.	1		1
	Macrozoobenthic organism			
	Oligochaeta			
5	<i>Stylaria</i> sps.		1	
6	Branchiura sowerbyi	1	1	1
	Diptera			
7	Penteneura sps.		1	
8	Chironomids tentanus	1	1	1
9	Palpomyia sps.		1	
	Coleoptera			
10	Enochrus sps.	1	1	1
11	Hydrophilusss sps.	1	1	
	Mollusca			
12	Vivipara sps.	1	1	1
13	<i>Lymnea</i> sps.	1	1	1
14	Lymnaea surnhoei	1		1
15	Corbicula sps.	1	1	1
		12	13	10

Table 49. Seasonal Benthic diversity in Ken basin of M.P.

Figure 57. Group wise benthic species composition in Ken basin of M.P.

S.No	Species	Summer	Winter	Post monsoon
	Microzoobenthic Organisms			
	Protozoa			
1	<i>Diffugia</i> sps.	1	1	1
2	Arcella sps.	1	1	1
3	Colpodium sps.	1	1	
	Macrozoobenthic organism			
	Oligochaeta			
4	Tubifex tubifex	1	1	
5	Branchiura sowerbyi	1	1	1
	Hirudinea			
6	Glossiphonia complanta		1	
	Diptera			
7	Tantytarsus sps.		1	1
8	Culicoides sps.	1		1
9	Chironomids tentanus	1	1	1
10	Palpomyia sps.		1	
	Coleoptera			
11	Agabinus sps.	1	1	1
12	Hydrophilusss sps.		1	
	Ephemeroptera			
13	Stenonema sps.	1	1	
	Mollusca			
14	<i>Vivipara</i> sps.	1	1	1
15	<i>Lymnea</i> sps.	1	1	1
16	Thiara sps.	1	1	
17	Corbicula sps.	1	1	1
18	Planorbidea sps.		1	
		13	17	10

Table 50. Seasonal Benthic species composition in Son basin of M.P.

Figure 58. Seasonal Benthic species composition in Son basin of M.P.

Figure 59. Group wise Benthic species composition in Son basin of M.P.

S.No	Species	Summer	Winter	Post monsoon
	Microzoobethic Organisms			
	Protozoa			
1	Arcella sps.	1	1	1
2	Colpodium sps.	1	1	1
	Diptera			
3	Penteneura sps.		1	1
4	Chironomids tentanus	1	1	1
5	<i>Tripula</i> sps.	1		1
	Coleoptera			
6	Enochrus sps.	1	1	
	Mollusca			
7	<i>Vivipara</i> sps.	1	1	1
8	<i>Lymnea</i> sps.	1	1	1
9	Lymnaea surnhoei	1	1	1
10	Thaira scabra	1	1	1
11	Thaira pyramis	1	1	1
12	Mainwaringia paludomoidea		1	1
13	Thaira tuberculata	1	1	1
14	Thaira scabra	1	1	
15	Hydrobioides nana	1	1	1
16	Forcipomypia sps.		1	
		13	15	13

Table 51. Seasonal benthic diversity in Rajgarh Distt. basin of M.P.

Figure 60. Seasonal Benthic diversity in Rajgarh Distt. basin of M.P.

Figure 61. Group wise Benthic species composition in Rajgarh basin of M.P.

11. Macrophytes (Aquatic Plants)

Macrophytes are an aquatic plant that grows in or near water and is emergent, submergent or free floating. In Aquatic system Macrophytes provide cover for fish and substrate for aquatic invertebrates, produce oxygen and act as food for some fish and wildlife. Aquatic plants occupy the position of primary producers in aquatic ecosystems. They trap solar energy and convert it into chemical energy for the use of their own and other animals of the system, which is known as photosynthesis. These plants are extremely efficient in removing nutrients from polluted water thus minimizing eutrophication of aquatic habitats. Macrophytes provide habitats to epiphytes, eggs of certain insects, mollusks and fishes. They also attract birds for food, nesting and shelter.

Plants, or macrophytes, in aquatic systems live in both the benthic and pelagic zones and can be grouped according to their manner of growth: (1) emergent macrophytes = rooted in the substrate but with leaves and flowers extending into the air, (2) floating-leaved macrophytes = rooted in the substrate but with floating leaves, (3) submersed macrophytes = not rooted in the substrate and floating beneath the surface and(4) free-

floating macrophytes = not rooted in the substrate and floating on the surface. These various forms of macrophytes generally occur in different areas of the benthic zone, with emergent vegetation nearest the shoreline, then floating-leaved macrophytes, followed by submersed vegetation. Free-floating macrophytes can occur anywhere on the system's surface.

During the macrophytes study at different river basin of Madhya Pradesh a total of 31 species were identified. A total of 31 species of macrophytes have been recorded in the river basin, out of which 13 species emergent(42%), 14 are submersed(45%) and 4 are free floating(13%). The details of the macrophytic species encountered in the river basin are given in the table below.

Emergent	Submersed	Free floating
Polygonum glabrum	Hydrilla vertecillata	Eichhornea crassipes
Ipomea fistulosa	Ceratophyllum demersum	Azolla pinnata
Ipomea aqatica	Potamogeton crispus	Trapa bispinosa
Nelumbo nucirera	Potamogeton pectinatus	Lemna minor
Nymphea	Chara sp.	
Juscia repens	Myriophylla spathulatum	
Typha lattifolia	Najas indica	
Typha angustata	Najas marina	
Scirpus royeli	Najas graminae	
Ludwigia adscendens	Nitella sp.	
Hygrorhiza aristata	Ottelia alismoides	
Cyperus articulates	Potamogeton natans	
Cyperus rotundus	Potamogeton nodosus	
	Vallisneria spiralis	

Table 52. Macrophytes diversity in different river basin of Madhya Pradesh

During the macrophytes study at the river basin the higher diversity was observed in Betwa Basin comprises of 31 species followed by Sone Basin comprises of 23 species, Chambal Basin comprises of 19 species, Seasonal ponds and river of Rajgarh District comprises of 19 species, Tapti basin comprises of 17 species, and Ken Basin comprises of 13species

11.2. Macrophytes diversity in Chambal Basin

During the macrophytes study at Chambal basin a total of 19 species were identified. A total of 19 species of macrophytes have been recorded in the river basin, out of which 7 species are emergent (37%), 11 are submersed (58%) and 1 is free floating (5%). The higher diversity of macrophytes was observed during summer (16 species) season while the minimum was observed in the Post monsoon (8 species) season.

11.2. Macrophytes diversity in Betwa Basin

During the macrophytes study at Betwa basin a total of 31 species were identified. A total of 31 species of macrophytes have been recorded in the river basin, out of which 13 species are emergent (42%), 14 are submersed (45%) and 4 are free floating (13%). The higher diversity of macrophytes was observed during summer (30 species) season while in the winter and post monsoon season diversity was observed same (25 species).

11.3. Macrophytes diversity in Tapti Basin

During the macrophytes study at Tapti basin a total of 17 species were identified. A total of 17 species of macrophytes have been recorded in the river basin, out of which 7 species are emergent (41%) and 10 are submersed (59%). The higher diversity of macrophytes was observed during winter (17 species) season while the minimum was observed in the summer (12 species) season.

11.4. Macrophytes diversity in Ken Basin

During the macrophytes study at Ken basin a total of 13 species were identified. A total of 13 species of macrophytes have been recorded in the river basin, out of which 5species are emergent (38%) and 8 are submersed (62%). The higher diversity of macrophytes was

observed during winter (12 species) season while the minimum was observed in the summer (9 species) season.

11.5. Macrophytes diversity in Son Basin

During the macrophytes study at Son basin a total of 23 species were identified. A total of 23 species of macrophytes have been recorded in the river basin, out of which 10 species are emergent (43%), 12 are submersed (52%) and 1 is free floating (4%). The higher diversity of macrophytes was observed during summer (23 species) season followed by a gradual decreasing trend in winter (20 species) season while lower diversity was observed during post monsoon (17 species) season.

11.6. Macrophytes diversity in Rajgarh District

During the macrophytes study at Seasonal ponds and river of Rajgarh District a total of 19 species were identified. A total of 19 species of macrophytes have been recorded in the river basin, out of which 9 species are emergent (47%), 8 species are submersed (42%) and 2 are free floating (11%). The diversity of macrophytes was observed during summer and winter season were same (17 species) while in the post monsoon season 16 species were recorded.

S.No	Species	Chambal Basin	Betwa basin	Tapti basin	Ken Basin	Sone Basin
1	Azolla pinnata		1			
2	Cyperus rotundus	1	1	1	1	
	Ceratophyllum					
3	demersum	1	1	1	1	1
4	Chara sp.		1			1
5	Cyperus articulatus		1			
6	Eichhornia crassipes	1	1			1
7	Hydrilla verticillata	1	1	1	1	1
8	Hygrorhiza aristata		1		1	
9	Ipomea aquatica	1	1	1	1	1
10	Ipomea fistulosa		1	1		1
11	Jussiaea repens	1	1	1		1

12	Lemna minor		1			1
13	Ludwigia adscendens		1			1
	Myriophylla					
14	spathulatum		1		1	1
15	Najas indica	1	1	1	1	1
16	Najas marina		1			
17	Najas graminae	1	1	1		1
18	Nelumbo nucifera	1	1			1
19	Nitella sp.	1	1	1	1	
20	Nymphaea lotus		1			1
21	Ottelia alismoides	1	1			
22	Potamogeton cricpus	1	1	1	1	1
23	Potamogeton natans	1	1	1		1
	Potamogeton					
24	pectinatus	1	1	1	1	1
25	Polygonum glabrum	1	1	1	1	1
26	Potamogeton nodosus	1	1	1		1
27	Scirpus royeli	1	1	1	1	1
28	Trapa bispinosa		1			
29	Typha angustata		1	1		1
30	Typha latifolia	1	1			1
31	Vallisneria spiralis	1	1	1	1	1
		19	31	17	13	23

Figure 62. Macrophytes diversity in different river basin of M.P.

S.No	Species	Summer	Winter	Post monsoon
1	Cyperus rotundus	1	1	1
2	Ceratophyllum demersum	1		
3	Eichhornia crassipes	1	1	
4	Hydrilla verticillata	1	1	1
5	Ipomea aquatica	1	1	1
6	Jussiaea repens		1	
7	Najas indica	1		1
8	Najas graminae	1		
9	Nelumbo nucifera	1		1
10	Nitella sp.	1		
11	Ottelia alismoides	1	1	
12	Potamogeton cricpus		1	1
13	Potamogeton natans	1	1	1
14	Potamogeton pectinatus	1	1	1
15	Polygonum glabrum	1	1	
16	Potamogeton nodosus	1	1	
17	Scirpus royeli		1	
18	Typha latifolia	1	1	
19	Vallisneria spiralis	1	1	
		16	14	8

Table 54. Seasonal Macrophytes diversity in Chambal basin

Figure 63. Seasonal macrophytes diversity in Chambal basin of M.P.

S.No	Species	Summer	Winter	Post monsoon
1	Azolla pinnata	1		1
2	Cyperus rotundus	1		
	Ceratophyllum			
3	demersum	1	1	
4	Chara sp.	1		
5	Cyperus articulatus	1		1
6	Eichhornia crassipes	1	1	1
7	Hydrilla verticillata	1	1	1
8	Hygrorhiza aristata	1	1	1
9	Ipomea aquatica	1	1	1
10	Ipomea fistulosa	1	1	1
11	Jussiaea repens		1	
12	Lemna minor	1	1	
13	Ludwigia adscendens	1	1	
-	Myriophylla			
14	spathulatum	1	1	1
15	Najas indica	1	1	1
16	Najas marina	1	1	1
17	Najas graminae	1	1	1
18	Nelumbo nucifera	1	1	1
19	Nitella sp.	1		1
20	Nymphaea lotus	1	1	1
21	Ottelia alismoides	1		1
22	Potamogeton cricpus	1	1	1
23	Potamogeton natans	1	1	1
	Potamogeton			
24	pectinatus	1	1	1
25	Polygonum glabrum	1	1	1
26	Potamogeton nodosus	1	1	1
27	Scirpus royeli	1	1	1
28	Trapa bispinosa	1	1	1
29	Typha angustata	1	1	1
30	Typha latifolia	1	1	1
31	Vallisneria spiralis	1	1	1
		30	25	25

Table 55. Seasonal Macrophytes diversity in Betwa basin of M.P.

Figure 64. Seasonal macrophytes diversity in Betwa basin of M.P.

Table 56. Seasona	l macrophytes	diversity i	in Ken	basin	of M.P.
-------------------	---------------	-------------	--------	-------	---------

S.No	Species	Summer	Winter	Post monsoon
1	Cyperus rotundus		1	
	Ceratophyllum			
2	demersum	1	1	1
3	Hydrilla verticillata	1	1	1
4	Hygrorhiza aristata		1	1
5	Ipomea aquatica	1	1	1
	Myriophylla			
6	spathulatum		1	1
7	Najas indica	1	1	
8	Nitella sp.		1	1
9	Potamogeton cricpus	1	1	
	Potamogeton			
10	pectinatus	1	1	1
11	Polygonum glabrum	1	1	1
12	Scirpus royeli	1		1
13	Vallisneria spiralis	1	1	1
		9	12	10

S.No	Species	Summer	Winter	Post monsoon
1	Cyperus rotundus		1	1
	Ceratophyllum			
2	demersum	1	1	1
3	Hydrilla verticillata	1	1	1
4	Ipomea aquatica	1	1	1
5	Ipomea fistulosa	1	1	1
6	Jussiaea repens		1	1
7	Najas indica	1	1	1
8	Najas graminae		1	1
9	Nitella sp.		1	1
10	Potamogeton cricpus	1	1	1
11	Potamogeton natans	1	1	1
	Potamogeton			
12	pectinatus	1	1	1
13	Polygonum glabrum	1	1	1
14	Potamogeton nodosus	1	1	1
15	Scirpus royeli	1	1	

16	Typha angustata	1	1	1
17	Vallisneria spiralis		1	1
		12	17	16

Figure 66. Seasonal macrophytes diversity in Tapti basin of M.P.

Table 58. Seasonal macrophytes diversity in Sonbasin of M.P.

S.No	Species	Summer	Winter	Post monsoon
1	Ceratophyllum demersum	1	1	
2	Chara sp.	1		
3	Eichhornia crassipes	1	1	1
4	Hydrilla verticillata	1	1	1
5	Ipomea aquatica	1	1	1
6	Ipomea fistulosa	1	1	
7	Jussiaea repens	1		
8	Lemna minor	1		
9	Ludwigia adscendens	1	1	
10	Myriophylla spathulatum	1	1	1
11	Najas indica	1	1	1
12	Najas graminae	1	1	1
13	Nelumbo nucifera	1	1	1
14	Nymphaea lotus	1	1	1

15	Potamogeton cricpus	1	1	1
16	Potamogeton natans	1	1	1
17	Potamogeton pectinatus	1	1	1
18	Polygonum glabrum	1	1	1
19	Potamogeton nodosus	1	1	1
20	Scirpus royeli	1	1	1
21	Typha angustata	1	1	1
22	Typha latifolia	1	1	1
23	Vallisneria spiralis	1	1	1
		23	20	17

Figure 67. Seasonal macrophytes diversity in Son basin of M.P.

Table 59. Seasonal macrophytes diversity in Rajgarh Distt. of M.P.

S.No	Species	Summer	Winter	Post monsoon
1	Cyperus rotundus	1		
2	Ceratophyllum demersum	1	1	1
3	Eichhornia crassipes	1		1
4	Hydrilla verticillata	1	1	1
5	Ipomea aquatica	1	1	1
6	Ipomea fistulosa	1	1	1

7	Jussiaea repens		1	1
8	Lemna minor	1	1	1
9	Myriophylla spathulatum	1	1	1
10	Najas graminae	1	1	1
11	Nelumbo nucifera	1	1	1
12	Nymphaea lotus	1	1	1
13	Ottelia alismoides	1	1	
14	Potamogeton pectinatus	1	1	1
15	Polygonum glabrum	1	1	
16	Potamogeton nodosus	1	1	1
17	Scirpus royeli	1	1	1
18	Typha latifolia		1	1
19	Vallisneria spiralis	1	1	1
		17	17	16

Figure 68. Seasonal macrophytes diversity in Son basin of M.P.

Figure 69. Macrophytes species composition in different river basin of M.P.

12. Birds diversity in different river basin of M.P.

12.1. Betwa basin

On the basis of field survey, total 42 species belonging to 21 families and 10 orders were found in Betwa River (Between Bhojpur and Vidisha, Upper lake, Halali Dam). Study showed that the most abundant family was Ardeidae (57%) followed by the families Charadriidae (20%) and Phalacrocoracidae (13%) in order of abundance. Median egrets (*Egretta intermedia*) and little egrets (*Egretta garzetta*) were the most common birds recorded.

12.2. Chambal basin

Among the diversity of bird species identified in the Chambal River (Between Nagda and Gandhi Sagar Dam, around Shipra river and Gambhir Dam), a total of 66 species belonging to 11 orders and 27 families were recorded. Among these Charadriidae (16%) is the dominant family followed by Anatidae and Ardeidae (10%); Phalacrocoracidae and Rallidae (8%). The most dominant bird was Common Coot (*Fulica atra*). Other common birds were Median egrets (*Egretta intermedia*) and Indian cormorant (*Phalacrocorax fuscicollis*).

12.3. Tapti basin

This study identified the diversity of bird species found in Tapti River (Between Betul and Burhanpur) and 36 species falling in 9 orders and 22 families were recorded. Observations of birds were made during the period of migratory season Nov. 2007 to Jan. 2008. Among these, most abundant families were Ardeidae (22%), Charadriidae, Motacillidae and Muscicapidae (14%) and Phalacrocoracidae (13%). The common birds were Median egrets (*Egretta intermedia*) and little egrets (*Egretta garzetta*).

12.4. Ken basin

On the basis of field survey, total 31 species were recorded belonging to 10 orders and 19 families in Ken River (Between Singora village and Bariyarpur Dam). The study showed that the most abundant family was Ardeidae (25%) followed by the families Charadriidae (20%), Phalacrocoracidae, Anatidae and Rallidae (10%) in order of abundance. Little egrets (*Egretta garzetta*) and Indian pond heron (*Ardeola grayii*) were the common birds recorded.

12.5. Son basin

This study identified bird species in the Son River (Around Govindgarh lake and Bansagar reservoir). A total of 38 species belonging to 9 orders and 18 families were recorded. Among these, Ardeidae (17%) was most dominant family followed by Charadriidae (13%), Rallidae and Anatidae (10%). Indian cormorant (*Phalacrocorax fuscicollis*), Median egrets (*Egretta intermedia*) and Common coot (*Fulica atra*) were the most common birds recorded in these sites.

12.6. Rajgarh District

On the basis of field survey, total 47 species were recorded belonging to 10 orders and 22 families in Betwa River (around Seasonal Ponds and Nawaj river). The study showed that most abundant family was Charadriidae (20%) followed by the families Ardeidae (16%) Rallidae and Motacillidae (9%) in order of abundance. Large egret (*Ardea alba*) and Indian pond heron (*Ardeola grayii*) were the common birds recorded.

Table 60. Birds diversity in different river basin of M.P.

S No	Order/Family	Common Name	Zoological Name	Rajgarh	Betwa basin	Tapti basin	Chambal Basin	Ken basin	Son basin
5.110	Order - Pelecaniformes								
1	family - Phalacrocoracidae	Large Cormorant	Phalacrocorax carbo	1	1	1	1		
2		Indian Cormorant	Phalacrocorax fuscicollis	1	1	1	1	1	1
3		Little Cormorant	Phalacrocorax niger	1	1	1	1	1	1
4		Darter	Anhinga rufa		1	-	1	-	
	Order -Ciconiformes	Dutti			-		-		
5	family - Ardeidae	Grev Heron	Ardea cinerea	1	1	1	1	1	1
6		Purple Heron	Ardea purpurea	1			1		
7		Large Egret	Ardea alba				1		1
8		Little Egret	Egretta garzetta	1	1	1	1	1	1
9		Median Egret	Egretta intermedia	1	1	1	1	1	1
10		Cattle Egret	Bubulcus ibis	1		1	1	1	
11		Indian Pond Heron	Ardeola gravii	1	1	1	1	1	1
12	family - Ciconiidae	White necked Stork		1					
13		Openbilled Stork	Anastomus oscitans	1			1		
14	family - Threskionithidae	Glossy Ibis	Plegadis falcinellus			1			
	Order - Anseriformes	ž							
15	family - Anatidae	Ruddy Shelduck	Tadorna ferruginea	1	1	1	1	1	1
16		Spottbill Duck	Anas poecilorhyncha				1	1	1
17		Gadwall	Anas strepera	1			1		
18		Eurasian Wigeon	Anas penelope				1		
19		Mallard	Anas platyrhynchos				1		
20		Northern Pintail	Anas acuta				1		1
	Order -Falconiformes								
21	family - Accipitridae	Pallas's Fish Eagle	Haliaeetus leucoryphus				1		
22		Marsh Harrier	Circus aeruginosus				1		
	Order -Galliformes								
23	family - Phasianidae	Indian Peafowl	Pavo cristatus	1	1		1	1	
	Order -Gruiformes								
24	family - Rallidae	Whitebreasted Waterhen	Amaurornis phoenicurus	1	1	1	1	1	1
25		Indian Moorhen	Gallinula chloropus	1	1		1		1
26		Purple Swamphen	Porphyrio porphyrio	1			1		
27		Common Coot	Fulica atra			1	1	1	1
	Order - Charadriiformes								
28	family - Charadriidae	Red-wattled Lapwing	Vanellus indicus	1	1	1	1	1	1
29		River Lapwing	Vanellus duvaucelii	1	1		1	1	1
30		Little Ringed Plover	Charadrius dubius	1	1	1	1	1	1
31		Kentis Plover	Charadrius alexandrinus	1	1		1		
32		Great Stone Plover	Esacus magnirostris	1			1		
33		Spotted Redshank	Tringa erythropus	1			1		
34		Common Redshank	Tringa totanus	1	1		1	1	1
35		Marsh Sandpiper	Tringa stagnatilis	1			1		
36		Common Greenshank	Tringa nebularia	1	1	1	1		

37		Common Sandpiper	Tringa hypoleucos	1					
38	family - Recurvirostrisae	Black-winged Stilt	Himantopus himantopus	1	1	1	1	1	1
39	family - Laridae	Brown-headed Gull	Larus brunnicephalus				1		
40		River Tern	Sterna aurantia	1	1	1	1	1	1
	Order -Columbiformes								
41	family - Columbidae	Bluerock Pigeon	Columba livia	1	1	1	1	1	1
42		Red Collared Dove	Streptopelia tranquebarica				1		
43		Spotted Dove	Streptopelia chinensis	1	1		1		
	Order -Psittaciformes								
44	family - Psittacidae	Rose-ringed Parakeet	Psittacula krameri		1	1	1	1	1
	Order -Cuculiformes								
45	family - Strigidae	Spotted Owlet	Athene brama	1					
	Order -Coraciiformes								
46	family - Alcedinidae	Whitebrested Kingfisher	Halcyon smyrnensis	1	1	1	1	1	1
47		Small Blue Kingfisher	Alcedo atthis	1	1		1		
48		Pied Kingfisher	Ceryle rudis	1	1	1	1	1	1
49		Storkbilled Kingfisher	Halcyon capensis		1				
50	family - Meropidae	Green Bee-eater	Merops orientalis	1	1	1	1	1	1
51	family - Coraciidae	Indian Roller	Coracias benghalensis	1	1	1	1		
52	family -Upupidae	Ноорое	Upupa epops			1	1		
53	family -Bucerotidae	Indian Grey Hornbill	Tockus birostris		1	1	1		
	Order- Passeriformes								
54	family - Alaudidae	Oriental Sky Lark	Alauda gulgula	1		1			
55		Ashycrowned Finch Lark		1			1		
56	family - Hirundinidae	Wire-tailed Swallow	Hirundo smithii	1	1		1	1	1
57		Swallow	Hirundo rustica	1					1
58	family - Daniidae	Bay-backed Shrike	Lanius vittatus	1	1		1	1	1
59	family - Dicruridae	Black Drongo	Dicrurus adsimilis	1	1	1	1	1	1
60	family - Sturnidae	Brahminy Myna	Sturnus pagodarum				1		
61		Common Myna	Acridotheres tristis	1			1	1	1
62		Pied Myna	Sturnus contra				1		
63	family - Corvidae	House Crow	Corvus splendens		1			1	1
64		Jungle Crow	Corvus macrorhynchos	1	1	1	1		1
65		Indian Tree Pie	Dendrocitta vagabunda			1	1		
66	family - Pycnonotidae	Red-vented Bulbul	Pycnonotus cafer		1	1	1	1	1
67	family -Muscicapidae	Common Babbler	Turdoides caudatus	1	1	1	1		1
68		Paradise Flycatcher	Terpsiphone paradisi				1		
69		Paddyfield Warbler	Acrocephalus agricola		1	1			
70		Magpie Robin	Copsychus saularis		1	1	1	1	1
71		Indian Robin	Saxicoloides fulicata				1		1
72	family -Motacillidae	Paddyfield Pipit	Anthus novaeseelandiae	1	1	1	1	1	1
73		Yellow Wagtail	Motacilla flava	1					
74		White Wagtail	Motacilla alba	1	1	1	1	1	1
75		Large pied Wagtail	Motacilla maderaspatensis	1	1	1	1		1
76	family -Ploceidae	Baya Weaver	Ploceus philippinus	1		1	1		
77		Spotted Munia	Lonchura Punctulata	1					
			TOTAL	47	42	36	66	31	38

Figure 70. Birds diversity in different river basin of M.P.

Figure 71. Familywise birds species composition in different river basin of M.P.

13. Physico-chemical properties

Table 61. Physico-chemical variation of Tapti Basin and Chambal Basin during the April- may 2007

		Τa	apti River						Cham	bal River	
_	Parasdoh	Kotidoh I	Cotidoh Deep pool Tedtali Gurface Bottom Surface Bottom				ep pool	Nepa	Basai	Gandhi	Sagar
Parameters	Deep pool		1				Chambal River har Deep pool Nepa Nagar Basai Gandhi Sagar frace Bottom Surface Surface Surface Surface Burface Bottom N-21°48.052' 21°25.940' N-24°4.558' N-24°41.224' E E-76°42.903' 76°24.58' E-77°31.723' E-75°33.641' 4.2 5 6 230 36.5 35.5 38.5 38 1.5 31.1 33 31 31.8 27 200 70 50 150 8.9 7.4 8.4 8.9 8.7 7.8 270 320 360 240 160 270 120 500 580 380 240 410 8.2 6.8 5.6 7.5 8.3 13 .94 2.52 2.31 8.4 11.6 0.4 Ab. 12 20 18 3.2 <				
	Surface	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Surface	Surface	Bottom
	N-							N-			
Lat.	21°40.795'	N-21°	48.625'	N-21°2	29.992'	N-21°4	8.052'	21°25.940'	N-24°4.558'	N-24°4	1.224'
Long.	E-77°59.686'	E-77%	38.687'	E-76º2	14.774'	E-76°4	2.903'	E- 76°24.58'	E-77°31.723'	E-75°3	3.641'
Depth (m)	6.1		5	3	.5	4.	.2	5	6	23	0
Air Temperature (°c)	40	3	3	36	5.5	36	.5	35.5	38.5	38	3
Water, Temperature (°c)	33	30	29	31.5	30	31.5	31.1	33	31	31.8	27
Transparency (cm)	175	22	25	20)4	20	00	70	50	15	0
pH	8.2	7.9	8.4	8.7	8.6	8.9	7.4	8.4	8.9	8.7	7.8
TDS(mg/l)	327	214	195	270	270	270	320	360	240	160	270
Conductivity (µs/cm)	520	340	310	410	410	420	500	580	380	240	410
Turbidity (NTU)	9	6.5	4.6	5.7	4.4	8.2	6.8	5.6	7.5	8.3	13
D.O (mg/l)	5.04	6.3	5.46	3.78	2.1	2.94	2.52	2.31	8.4	11.6	0.4
Free CO _{2 (mg/l)}	14	19	6	10	16	Ab.	12	20	18	3.2	16
Carbonate Alkalinity (mg/l)	Ab.	Ab.	Ab.	Ab.	Ab.	4	Ab.	Ab.	Ab.	Ab.	Ab.
Bicarbonate Alkalinity (mg/l)	122	108	126	198	200	220	180	172	200	180	220
Total Alkalinity (mg/l)	122	108	126	198	200	224	180	172	200	180	220
Total Hardness (mg/l)	152	178	134	160	170	156	172	200	160	102	164
Calcium Hardness (mg/l)	122	146	88	108	112	112	118	154	132	68	118
Magnesium Hardness (mg/l)	30	32	42	52	58	46	54	46	28	34	46
Chloride (mg/l)	24.98	31.97	31.97	36.96	40.96	40.96	40	46.95	31.97	46	64

		Be	twa Rive	er							Upper	· Lake		
Parameters	Bhojpu po	ır Deep ols	Bhojpur	Bridge	Vidisha		Pagneshy	war	Behta villa	age	Central Z	Lone	Sehore N	aka
	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom
Lat.	N-23°()6.157'	N23 ⁰ 05	.974',	N-23°3	2.233'	N-23°2	26.182'	N-23°15	5'48.1"	N-23°1	5'12.0"	N-23°1	3'55.2"
Long.	E-77°3	34.591'	E77 ⁰ 34	.465')	E-77º4	7.521'	E-77º4	13.784'	E-77º 2	0'16.2"	E-77º 2	20'55.9"	E-77º 1	9'38.4"
Depth (m)	6.	.6	1	.2	1.5	53	2	2	2.:	5	2	1		2
Air Temperature (°c)	3	4	3	3	40	0	3	8	19)	1	9	2	6
Water, Temperature (°c)	20.8	20.5	29	27	34	33	31	30	20	21	23	22	22	20
Transparency (cm)	5	0	6	0	40	00	9	5	Up to B	ottom		9.5	8	2
рН	8.2	6.9	8.5	8.2	9.4	9.2	8.1	7.9	9.4	9.3	8.4	84	8.6	8.2
TDS(mg/l)	333	352	333	340	214	239	270	296	88.2	94.5	100	107	100	107
Conductivity (µs/cm)	530	560	530	540	340	380	430	470	140	150	160	170	160	170
Turbidity (NTU)	5.5	13.5	3.6	7.7	41	68	13.5	15.9	9	10.3	17.1	43	16.6	20
D.O (mg/l)	5.88	Nil	9.24	7.14	12.47	8.48	5.88	4.07	11.2	11.2	8	7	8.2	6
Free CO _{2 (mg/l)}	8	56	6	32	Ab.	Ab.	20.4	14	Ab.	Ab.	4	24	4	12
Carbonate Alkalinity (mg/l)	Ab.	Ab.	Ab.	Ab.	1.8	1.4	Ab.	Ab.	6	10	Ab.	Ab.	Ab.	Ab.
Bicarbonate Alkalinity (mg/l)	164	170	180	156	200	284	294	260	22	18	14	20	18	18
Total Alkalinity (mg/l)	164	170	180	156	201.8	285.4	294	260	28	28	14	20	18	18
Total Hardness (mg/l)	162	322	153	168	80	118	136	142	60	72	70	78	64	86
Calcium Hardness (mg/l)	108	198	82	106	68	84	102	102	18.9	29.4	21	23.1	21	33.6
Magnesium Hardness (mg/l)	54	124	71	62	12	34	34	40	41.1	42.6	49	54.9	43	52.4
Chloride (mg/l)	74.93	82.92	105.9	111.9	33.97	34.97	56.94	61.94	16.98	17.98	17.98	19.98	14.98	14.98

Table 62. Physico-chemical variation of Betwa Basin during the April- may 2007

			Betwa I	River			На	Halali Upper Lake						
Parameters	Bhoj	our	Near Pag	gneshwar	Vid	isha			Behta	village	Centra	ıl zone	Sehor	e Nala
	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom
Lat.	23 ⁰ 06'1	5.7"	23 ⁰ 26	'08.1''	23 ⁰ 32	' 9.8''	23 ⁰ 29	·9.32·'	23º15	'48.1"	23º15	'12.0"	23°13	'55.2"
Long.	77 ⁰ 34':	59.1"	770 43	·.49.3"	77 ⁰ 47	'45.8"	77 ⁰ 33	'11.6"	77º 20)'16.2"	77º 20)'55.9"	77º 19	9'38.4"
Depth (m)	6.6		2	2	1	4	8	8	2	.5	2	1	2	2
Air Temperature (°c)	9		2	2	2	7	2	4	1	2	2	6	2	9
Water temperature (°c)	12	8	19	18	11	8	22	19	14	14	20	18	24	23
Transparency (cm)	46		5	3	3	8	2	4	Upto I	Bottom	1	1	6	7
рН	8.4	7.3	7.6	7.9	8.8	8.2	8.4	7.4	8.8	8.7	8.6	7.9	8.9	8.1
TDS (mg/l)	320	324	240	256	236	256	140	164	76	82	94	112	102	118
Conductivity	536	548	390	420	356	398	260	284	128	148	134	184	138	170
Turbidity (NTU)	4.5	10.5	12.5	18.9	48	84	12.5	36	6	6.4	12.5	18.2	18	22.4
D.O (mg/l)	8.2	Nil	6.2	4.2	10.8	8.2	8.8	6.8	9.2	8.8	8.4	7.6	8.8	6.8
Free co ₂ (mg/l)	Absent	42	16.4	8	Absent	18.2	Absent	26	Absent	Absent	Absent	20.4	Absent	16.4
Carbonate Alkalinity (mg/l)	8.4	Absent	Absent	Absent	4.2	Absent	6.4	Absent	4.4	8.6	4	Absent	8.2	Absent
Bicarbonate Alkalinity (mg/l)	156	178	284	296	184	200	40	56	18	24	16	22	14	18
Total Alkalinity(mg/l)	164.4	178	284	296	188.2	200	46.4	56	22.4	32.6	20	22	22.2	18
Total Hardness (mg/l)	184	246	146	154	102	126	128	254	48	60	64	84	58	68
Calcium Hardness (mg/l)	144	182	102	112	56	68	96	174	24	28	36	44	28	32
Magnesium Hardness (mg/l)	40	64	34	42	46	58	32	80	24	32	28	40	30	36
Chloride (mg/l)	84.92	86.92	44.94	56.94	36.98	42.96	22.98	46.94	18.94	19.98	16.94	16.94	12.94	14.98

Table 63. Physico-chemical variation of Betwa basin during the Nov- Dec 2007

			Chamb	al River			Shipra	River	Gambh	ir Dam
Parameters	Na	gda	Basai V	Village	Gandh	i Sagar	Kimor	e Ghat		
	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom
Lat.	23 ⁰ 27	'48.7"	$24^{0} 04$	'32.1''	24 ⁰ 41	'01.3''	23 ⁰ 13	'18.9''	23 ⁰ 12	'32.1''
Long.	75 ⁰ 23' 55.0''		75 ⁰ 31	'46.0''	75°33	'55.8''	$75^{\circ} 47^{\circ}$	06.3"	75 ⁰ 38	'12.7''
Depth (m)	5.	5.92		67	22	2.5		2	32	
Air Temperature (°c)	2	28		6	2	0	1	4	2	8
Water temperature (°c)	22	20	20	19	18	14	12	11	22	18
Transparency (cm)	2	24		56		14	1	2	3	2
pH	7.8	7.4	8.1	7.9	8.2	7.8	7.6	6.6	8.6	8.1
TDS (mg/l)	280	340	180	196	130	182	340	410	96	112
Conductivity	352	546	242	255	188	246	556	602	166	212
Turbidity (NTU)	14.2	21.2	9.2	24.2	24.2	20.4	22.2	34.8	7.6	11.2
D.O (mg/l)	7.4	6.6	8.2	7.8	8.6	7.4	7.4	6.8	8.8	8.2
Free co_2 (mg/l)	16	18	4.8	18	2.6	16	16	22	Absent	8.2
Carbonate Alkalinity (mg/l)	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	4.6	Absent
Bicarbonate Alkalinity (mg/l)	210	246	180	224	184	212	280	320	80	96
Total Alkalinity(mg/l)	210	246	180	224	184	212	280	320	84.6	96
Total Hardness (mg/l)	160	280	156	240	120	154	180	214	110	184
Calcium Hardness (mg/l)	112	208	112	178	84	112	126	142	78	118
Magnesium Hardness (mg/l)	48	72	44	62	28	42	54	72	32	66
Chloride (mg/l)	55.96	86.94	46.94	52.98	52.94	60.98	48.98	78.98	34.94	40.96

Table 64. Physico-chemical variation of Chambal basin during the Nov- Dec 2007

					TA	PTI RIVE	R						
Parameters	Para	sdoh	Bara	linga	Ama	rkash	Тес	ltali	Rai	itali	Bo Ghat,Ne	oat epanagar	
	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	
Lat.	21°40	'55.9''	21 ⁰ 48	21°48'39.4"		21°47'98.0"		21°29'99.2''		21°28'05.2''		21°25'94.0''	
Long.	77 ⁰ 59	77 ⁰ 59' 44.2''		77°47' 08.8''		77°25'68.9''		77 ⁰ 44' 77.4''		76°42'90.6''		'05.8''	
Depth (m)	6	6.1		2.5		6		3.5		.2	4	5	
Air Temperature (°c)	1	14		7	2	.6	1	6	2	6	2	2	
Water temperature (°c)	17	9	16	13	19	17	16	15	20	19	18	17	
Transparency (cm)	10	64	3	4	2	.6	186		112		2	8	
pH	8.6	7.8	8.4	7.9	8.8	8.1	8.6	7.6	8.4	7.9	7.8	6.4	
TDS (mg/l)	280	320	140	156	210	280	240	270	280	340	390	420	
Conductivity	460	530	212	232	310	346	318	340	348	550	596	620	
Turbidity (NTU)	6.6	10.4	2.4	6.8	8.8	12.6	6.8	12.2	11.2	14.6	36.2	44.6	
D.O (mg/l)	8.6	8.2	8.4	7.8	8.8	8.2	9.4	6.4	7.8	7.2	6.4	4.2	
Free co ₂ (mg/l)	Absent	14	Absent	Absent	Absent	6.8	Absent	18.2	Absent	12.8	18.2	22.4	
Carbonate Alkalinity (mg/l)	9.6	Absent	6.4	6.4	8.2	Absent	8.8	Absent	5.6	Absent	Absent	Absent	
Bicarbonate Alkalinity (mg/l)	136	144	82	112	112	136	144	178	156	220	310	460	
Total Alkalinity(mg/l)	145.6	144	88.4	118.4	120.2	136	152.8	178	161.6	220	310	460	
Total Hardness (mg/l)	160	172	112	132	142	162	156	174	146	168	210	246	
Calcium Hardness (mg/l)	128	136	84	98	102	108	116	124	102	112	164	182	
Magnesium Hardness (mg/l)	32	36	28	34	40	54	40	50	44	56	48	62	
Chloride (mg/l)	20.94	24.98	32.98	34.94	20.94	22.98	38.94	40.94	42.94	44.96	44.96	52.98	

Table 65. Physico-chemical variation of Tapti basin during the Nov- Dec 2007

			Ken R	liver		Son river					
	Ken -So	nar river									
Parameters	Co	on.	Salaiya	Village	Bariyarp	our Dam	Govindg	arh Lake	Bans	agar	
	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	
Lat.	24 ⁰ 23	'50.3''	24 ⁰ 48	24 ⁰ 48'43.4''		24 ⁰ 50'59.7"		24 ⁰ 14'83.9''		4.81"	
Long.	79 ⁰ 56'18.3''		80 ⁰ 05	80 ⁰ 05'19.1''		80° 5'46.3''		81° 19'53.4''		8.98''	
Depth (m)	8		2	2	1	11		2.5	8	3	
Air Temperature (°c)	2	8	3	0	1	6	2	4	2	8	
Water temperature (°c)	20	18	28	27	20	16	20	18	24	22	
Transparency (cm)	5	4	4	2	6	66		46		80	
pН	8.8	8.4	8.9	8.6	9.2	8.1	8.8	8.2	8.6	8.1	
TDS (mg/l)	120	126	102	112	140	168	82	186	136	192	
Conductivity	192	212	172	182	252	266	136	296	242	298	
Turbidity (NTU)	10.4	17.4	8.6	11.2	7.2	18.8	11.2	26.4	7.6	17.2	
D.O (mg/l)	10.2	8.8	9.2	8.6	8.4	8.2	12.4	4.2	8.4	7.2	
free co2 (mg/l)	Absent	Absent	Absent	Absent	Absent	8.4	Absent	16.6	Absent	6.8	
Carbonate Alkalinity (mg/l)	8.8	7.6	9.4	7.8	6.6	Absent	10.2	Absent	8.2	Absent	
Bicarbonate Alkalinity											
(mg/l)	134	138	120	132	110	118	82	94	102	126	
Total Alkalinity(mg/l)	142.8	145.6	129.4	139.8	116.6	118	92.2	94	110.2	126	
Total Hardness (mg/l)	126	148	112	136	102	136	84	118	134	210	
Calcium Hardness (mg/l)	96	112	84	124	76	108	62	98	92	158	
Magnesium Hardness											
(mg/l)	30	36	28	12	26	28	22	20	42	52	
Chloride (mg/l)	24.98	31.94	20.98	28.98	18.94	38.98	28.94	42.94	36.98	44.94	

Table 66. Physico-chemical variation of Ken and Son basin during the Nov- Dec 2007

			-		-		
	Bandrave	edra pond	Kudal	i pond	Newaj	River	
	Surface	Bottom	Surface	Bottom	Surface	Bottom	
Lat.	23 ⁰ 41	'42.6''	23 ⁰ 42 ³	' 46.7''	24 ⁰ 0'	24.2"	
Long.	770 04	' 11.8''	$77^{0} 00^{2}$	36.7"	76 ⁰ 44'28.4''		
Depth (m)	4	.4	3	.2	5	.5	
Air Temperature (°c)	2	2	31		2	.8	
Water temperature (°c)	20	18	24	22	22	19	
Transparency (cm)	Upto H	Jpto Bottom Upto Bottom		2	2		
pН	8.8	8.7	8.2	8	8.2	7.9	
TDS (mg/l)	180	210	146	148	132	144	
Conductivity	288	294	238	244	240	254	
Turbidity (NTU)	3.4	4.6	2.2	2.4	4.6	8.8	
D.O (mg/l)	9.2	8.8	8.6	8.2	8.8	7.8	
Free co_2 (mg/l)	Absent	Absent	Absent	Absent	Absent	6.8	
Carbonate Alkalinity (mg/l)	10.2	9.8	8.6	8.2	6.4	Absent	
Bicarbonate Alkalinity (mg/l)	82	96	78	86	102	118	
Total Alkalinity(mg/l)	92.2	105.8	86.6	94.2	108.4	118	
Total Hardness (mg/l)	122	126	86	98	112	132	
Calcium Hardness (mg/l)	80.6	88.2	54.6	72	84	102	
Magnesium Hardness (mg/l)	41.4	37.8	31.4	26	28	30	
Chloride (mg/l)	22.94	24.98	20.98	24.98	34.96	56.98	

Table 67. Physico-chemical variation of Ponds and Rivers of Rajgarh during the Nov- Dec 2007

		Betwa River						Halali			Upper Lake				
Parameters	Bho	jpur	Near Pag	gneshwar	Vid	isha			Behta	village	Centra	al zone	Sehor	e Nala	
	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	
Lat.	23 ⁰ 06	'15.7''	23 ⁰ 26	23°26'08.1''		23 ⁰ 32' 9.8''		23°29'9.32''		23°15'48.1"		23°15'12.0"		23°13'55.2"	
Long.	77 ⁰ 34	·'59.1"	770 43	".49.3"	77 ⁰ 47	''45.8''	77 ⁰ 33	'11.6"	77º 20)'16.2"	77º 20)'55.9"	77º 19	9'38.4"	
Depth (m)	6	.6		2	1	4	8	8	2	.5	2	4	2	2	
Air Temperature (°c)	3	4	3	6	3	6	3	0	2	8	3	34	3	2	
Water temperature (°c)	24	22	28	27	26	19	25	22	26	25	27	24	26	24	
Transparency (cm)	6	2	4	2	4	4	3	2	Upto I	Bottom	2	21	8	8	
pH	8.2	7.9	8.4	8.1	8.7	8.4	8.5	7.8	8.9	8.6	8.6	8.2	8.7	8.4	
TDS (mg/l)	410	442	380	430	310	342	210	264	110	112	86	102	180	230	
Conductivity	630	658	520	634	482	488	380	398	164	192	122	152	312	368	
Turbidity (NTU)	8.2	14.8	16.8	20.2	62	75	14	56	4.5	7	16.8	21	30	42	
D.O (mg/l)	8.4	6.8	8.8	8.4	9.2	8.2	8.4	7.2	9.6	8.4	8.4	8.2	9.4	8.4	
Free co ₂ (mg/l)	Absent	36	Absent	4	Absent	Absent	Absent	18	Absent	Absent	Absent	8.2	Absent	Absent	
Carbonate Alkalinity (mg/l)	8.8	Absent	6.8	Absent	8.6	8.4	9.2	Absent	10.2	8.6	6.2	Absent	9.6	8.8	
Bicarbonate Alkalinity (mg/l)	136	152	180	216	196	236	62	78	42	48	22	28	18	36	
Total Alkalinity(mg/l)	144.8	152	186.8	216	204.6	244.4	71.2	78	52.02	56.6	28.2	28	27.6	44.8	
Total Hardness (mg/l)	212	264	188	242	154	184	108	174	52	74	88	112	64	82	
Calcium Hardness (mg/l)	156	192	142	178	112	132	56	112	24	32	56	62	32	46	
Magnesium Hardness (mg/l)	56	72	46	64	42	52	52	62	28	42	32	50	32	36	
Chloride (mg/l)	91.91	100.9	58.94	63.94	45.95	51.95	25.97	31.97	33.97	37.96	21.98	31.97	41.96	45.95	

Table 68. Physico-chemical variation of Betwa basin during the Sep.-Oct. 2008

			Chamba	al River	Shipra River		Gambhir Dam				
Parameters	Nag	gda	Basai V	Village	Gandh	i Sagar	Kimor	e Ghat			
	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	
Lat.	23 ⁰ 27	23 ⁰ 27'48.7"		24° 04'32.1"		24 ⁰ 41'01.3''		23 ⁰ 13'18.9''		23° 12'32.1"	
Long.	75 ⁰ 23 [,]	75 ⁰ 23' 55.0''		'46.0''	75º33 [;]	55.8"	75 [°] 47' 06.3''		75° 38'12.7''		
Depth (m)	5.9	92	6.	67	22	2.5	2	2	3	2	
Air Temperature (°c)	3	2	3	5	2	6	2	4	3	4	
Water temperature (°c)	24	23	27	24	22	13	19	18	21	17	
Transparency (cm)	33		7	74		157		14		46	
pH	7.9	7.6	8.6	8.4	8.7	8.2	7.8	7.2	8.5	8.4	
TDS (mg/l)	327	373	242	271	146	190	399	425	135	157	
Conductivity	536	612	396	445	240	312	654	696	221	258	
Turbidity (NTU)	9.6	18.4	10.2	22	28	34	33	39.4	3.4	13.2	
D.O (mg/l)	8.4	7.8	8.8	8.4	9.2	8.2	7.8	7.2	9.6	8.4	
Free co ₂ (mg/l)	12	16	Absent	Absent	Absent	Absent	10.2	12.4	Absent	Absent	
Carbonate Alkalinity (mg/l)	Absent	Absent	6.4	4.8	8.4	6.8	Absent	Absent	3.2	4.6	
Bicarbonate Alkalinity (mg/l)	164	192	228	292	204	250	376	428	76	106	
Total Alkalinity(mg/l)	164	192	234.4	296.8	212.4	256.8	376	428	79.2	110.6	
Total Hardness (mg/l)	184	256	152	252	164	184	272	404	144	236	
Calcium Hardness (mg/l)	112.6	172.2	96.6	163.8	96.6	132.3	159.6	268.6	96.6	132.3	
Magnesium Hardness (mg/l)	71.4	83.8	55.4	88.2	67.4	51.7	112.4	135.4	47.4	103.7	
Chloride (mg/l)	62.94	78.92	51.95	64.94	61.94	68.93	64.94	88.91	25.97	37.96	

 Table 69. Physico-chemical variation of Chambal basin during the Sep.-Oct. 2008

		TAPTI RIVER										
Doromotoro	Dana	adab	Domo	linga	٨	ulroch	Ted	tol:	Dei	tali	Bo Chat Na	oat
Parameters	Para	suon	Dara	iinga	Allia	Kasn	Tec	itali	Kal	lan	Gilat, Ne	panagar
	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom
Lat.	21040	`55.9``	21°48'39.4"		21°47'98.0"		21°29'99.2''		21°28'05.2''		21°25'94.0"	
Long.	77 ⁰ 59'	77° 59' 44.2''		77 ⁰ 47' 08.8''		77°25'68.9"		77 ⁰ 44' 77.4''		'90.6''	76 ⁰ 24'05.8''	
Depth (m)	6.	6.1		.5	6	5	3.5		4.	.2	4	5
Air Temperature (°c)	2	4	2	8	2	6	3	0	3	4	3	2
Water temperature (°c)	19	18	24	23	22	20	25	24	27	25	26	24
Transparency (cm)	14	42	4	2	5	6	15	56	12	24	32	
рН	8.7	8.4	8.6	8.5	8.8	8.5	8.7	8.5	8.4	8.2	8.1	7.6
TDS (mg/l)	251	333	163	178	204	217	224	250	208	259	339	355
Conductivity	412	546	268	292	336	356	368	410	342	426	556	582
Turbidity (NTU)	10.2	12.4	2.2	8.8	5.2	10.3	3.2	8.6	5.6	12.9	44.2	56.8
D.O (mg/l)	9.6	7.2	9.2	8.8	9.6	8.8	9.6	7.2	9.6	7.2	7.2	4.8
Free co_2 (mg/l)	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	12.2	16.4
Carbonate Alkalinity (mg/l)	8.4	7.2	8.8	6.8	9.6	8.2	10.4	6.4	6.6	4.6	Absent	Absent
Bicarbonate Alkalinity (mg/l)	104	152	64	96	124	136	130	144	152	168	324	420
Total Alkalinity(mg/l)	112.4	159.2	72.8	102.8	133.6	144.2	140.4	150.4	158.6	172.6	324	420
Total Hardness (mg/l)	144	168	94	98	92	98	126	144	110	126	114	128
Calcium Hardness (mg/l)	92.4	107.1	81.9	88.2	78.4	62.8	110	120.6	92.4	121.8	96.4	88.2
Magnesium Hardness (mg/l)	51.6	60.9	12.1	9.8	13.6	35.2	16	23.4	17.6	4.2	17.6	39.8
Chloride (mg/l)	25.97	37.96	48.95	51.95	33.97	61.94	51.95	57.94	51.95	55.94	47.95	50.95

Table 70. Physico-chemical variation of Tapti basin during the Sep.-Oct. 2008

			Ken 1	River				Son	river	
Parameters	Ken -Sor Confl	Ken -Sonar River Confluence		Near Salaiya Village		our Dam	Govindgarh Lake		Near Deolond Village BansagarRes.	
	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom
Lat.	24 ⁰ 23	24 ⁰ 23'50.3''		24° 48' 43.4''		'59.7''	24 ⁰ 14'83.9''		240 22	4.81"
Long.	79 ⁰ 56	79 ⁰ 56'18.3''		'19.1''	80 ⁰ 5'	46.3"	81 ⁰ 19'53.4''		81 ⁰ 16'	8.98"
Depth (m)	8	3	2	2	1	1	22	5	8	3
Air Temperature (°c)	31		2	8	2	9	3	0	27	
Water temperature (°c)	24	17	25	24	19	17	22	16	20	18
Transparency (cm)	63		56		74		52		7	7
pH	8.7	8.5	8.7	8.4	8.8	8.4	8.8	8.4	8.8	8.5
TDS (mg/l)	143.35	158.6	115.29	128.1	175.07	190.32	99.43	148.84	158.6	198.25
Conductivity	235	260	189	210	287	312	163	244	260	325
Turbidity (NTU)	8.9	22.4	6.3	15.2	3.2	21.5	8.6	22.4	5.2	19.6
D.O (mg/l)	12.8	10	14	12.8	18	12.4	18.4	4.8	14	8.4
Free co2 (mg/l)	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
Carbonate Alkalinity (mg/l)	10	8	8	4	12	6	14	2	10	2
Bicarbonate Alkalinity (mg/l)	172	188	148	150	146	168	164	176	134	184
Total Alkalinity(mg/l)	182	196	156	154	158	174	178	178	144	186
Total Hardness (mg/l)	148	166	136	148	152	168	106	172	128	184
Calcium Hardness (mg/l)	88.2	111.3	100.8	123.9	86.1	109.2	96.6	123.9	109.2	151.2
Magnesium Hardness (mg/l)	59.8	54.7	35.2	24.1	65.9	58.8	9.4	48.1	18.8	32.8
Chloride (mg/l)	28.0	38.0	31.0	36.0	21.0	26.0	36.0	51.9	34.0	42.0

Table 71. Physico-chemical variation of Ken and Son basin during the Sep.-Oct. 2008

			-		-	
	Bandr	avedra				
Parameters	ро	nd	Kudal	i pond	Newaj	River
	Surface	Bottom	Surface	Bottom	Surface	Bottom
Lat.	23º 41	'42.6''	230 42	' 46.7''	24° 0' 24.2"	
Long.	77 ⁰ 04' 11.8''		77 ⁰ 00' 36.7''		76 ⁰ 44'28.4''	
Depth (m)	4	4.4		.2	5	.5
Air Temperature (°c)	2	8	3	0	3	2
Water temperature (°c)	19	16	22	21	19	17
Transparency (cm)	24	40	28	30	4	6
рН	8.6	8.5	8.7	8.6	8.6	8.1
TDS (mg/l)	207.4	235.46	162.26	168.36	189.1	204.35
Conductivity	340	386	266	276	310	335
Turbidity (NTU)	4.6	6.8	3.3	4.6	2.3	8.2
D.O (mg/l)	10.4	8.4	11.2	9.6	12.8	8.4
Free co ₂ (mg/l)	Absent	Absent	Absent	Absent	Absent	4
Carbonate Alkalinity (mg/l)	8	6	6	4	8	Absent
Bicarbonate Alkalinity (mg/l)	104	134	92	116	128	158
Total Alkalinity(mg/l)	112	140	98	120	136	158
Total Hardness (mg/l)	146	152	112	136	126	142
Calcium Hardness (mg/l)	110.0	124.0	76.0	84	92.0	118.0
Magnesium Hardness						
(mg/l)	36	28	36	52	34	24
Chloride (mg/l)	25.974	28.971	25.974	26.973	27.972	53.946

Table 72. Physico-chemical variation of Ponds and Rivers of Rajgarh during the Sep.-Oct. 2008

14. Resource mapping on GIS platform

Resource Mapping has been started at selected sites. We have collected maps available with Survey of India and Revenue Maps of the area. Study sites have been located on the maps for further analysis. Data of pre-field survey has been collected.

During pre-field survey we collected geographical reference positions of the study sites using a GPS and located this station on the base map for geo-referencing.

We have procured map of M.P. at the scale of 1:1 million and digitized the study areas. Further we are in the process to procure degree sheets at 1:250000 scale to cover the entire state on this scale.

We are procuring satellite data of AWiFS covering the entire state.

All these maps are being digitized and registered on GIS platform for further analysis.

15. Socio-economic status

During socioeconomic surveys we have identified 32 fishermen villages in under different river basin of M.P. out of 32 villages 10 villages belongs to Tapti river basin, 12 villages belongs to Betwa basin,5 villages under Ken basin, 2 village under Son basin,2 villages under Chambal basin, 1 village belong to Rajgarh (Rajgarh city). Details of fisherman village shown in table below.

Table 73. Settlement of fishing villa	ages under the river Basins
---------------------------------------	-----------------------------

River/Reservoir	District	Tehsil/	Village	Latitude	longitude	Sampling Site
Tapti	Betul	Bhanshdehi				
			Kheri	21 ⁰ 50' 59.84''	77 ⁰ 48' 03.26''	Baralinga
			Kunkhedi	21° 48' 19.1''	77 ⁰ 38' 7.81''	Amarkash
		Atner				
			Poni	21 ⁰ 42' 42.67''	78 ⁰ 03' 15.77''	Parasdoh
			Goula	21 [°] 41' 49.55"	78 ⁰ 02' 16.91''	Parasdoh

			Dhanora	21° 40' 23.41''	77 ⁰ 58' 18.59''	Parasdoh
			Nehri	21° 43' 01.34''	78 ⁰ 05' 36.47''	Parasdoh
	Burhanp ur	Burhanpur				
			Burhanpur	21 ⁰ 18'19.4''	76° 14' 32.00''	
			Tedtali	21 ⁰ 29'9.92''	76 ⁰ 44' 7.74''	Tedtali
			Dhar	21 ⁰ 28' 05.2''	76 ⁰ 42' 9.06''	Raitali
Betwa	Raisen	Bhojpur	Kiratpur	23° 05'9.74''	77 ⁰ 34' 46.5''	Bhojpur
		Raisen	Pagneshwar	23° 26' 05.35''	77 ⁰ 43' 59.28''	Pagneshwar
	Vidisha	Vidisha	Vidisha	23° 30' 52.72''	77° 47' 44.66''	Ramghat
Upper lake	Bhopal	Huzur	Betagaon	23 ⁰ 15' 38.94''	77 ⁰ 19' 57.35''	-
			Prempura	23 ⁰ 13' 07.16''	77 ⁰ 22' 13.51''	-
			Goragaon	23° 13' 02.82''	77 ⁰ 21' 00.66''	
			Bishankheri	23 ⁰ 13' 43.59''	77° 20' 22.50''	_
			Majhi Nagar	23° 15' 37.20''	77 ⁰ 22' 06.57''	-
			Borband	23° 15' 32.00''	77 ⁰ 20' 45.92''	-
			Halalpur	23° 15' 18.12''	77 ⁰ 22' 06.57''	_
			Karbala	23° 15' 27.66''	77 ⁰ 22' 23.05''	_
			Ramnagar colony	23 ⁰ 15' 20.72''	77 ⁰ 21' 44.89''	-
Chambal	Ujjain	Nagda	Nagda	23 [°] 27' 7.99''	75° 23' 8.80'	Nagda
			Kimor	23° 13' 18.9"	75° 47' 06.3''	Kimor Ghat
Sone	Rewa	Rewa	Govindgarh	24°22'48.1''	81 ⁰ 16' 8.98''	Govindgarh
	Shahdol	Shahdol	Deolond	24° 14' 8.39''	81 ⁰ 19'53.4''	Deolond
Ken	Panna	Panna	Mandla	24 ⁰ 43' 9.62''	80 ⁰ 0' 42.7''	Bariyarpur Dam
-----------------------------	---------	---------	-----------------	----------------------------	----------------------------	----------------------------------
			Bariyarpur	24 ⁰ 50' 59.7''	80 [°] 5' 46.3''	Bariyarpur Dam
			Salaiya village	24 ⁰ 48' 43.4''	80 ⁰ 5' 19.1''	Salaiya
			Tedi dhar	24 ⁰ 20' 00.5''	80 ⁰ 4' 7.98''	-
			Singora	24 ⁰ 24' 58.4''	79 ⁰ 55' 44.3''	Sonar-Ken river confluence
Seasonal river and Ponds	Rajgarh	Rajgarh	Rajgarh	24°0' 24.2"	76 ⁰ 44' 28.4''	Newaj river

Table 74. Population of fishing villages during the socioeconomic survey

River/Reservoir	Total Fisherman Families	Total population	Male Population	Female population	Yearly income by fishing (%)
Tapti Basin					
Paoni	12	68	42	26	40
Gaula	10	54	32	22	50
Kheri	31	127	81	46	60
Dhanora	5	20	16	4	55
Nehri	12	96	50	44	60
Kunkhedi	10	80	45	35	40
Burhanpur	25	175	95	80	40
Tedtali	12	100	57	43	50
Dhar	7	60	35	25	50
Chambal basin					
Nagda	22	96	52	44	40
Kimor	11	88	48	40	35
Betwa basin		•			
Pagneshwar	8	45	28	17	60
Kiratpur	9	50	30	20	50
Vidisha	10	42	25	17	60
Upper lake					
Prempura	2	9	4	5	40
Goragaon	12	70	38	32	50
Betagaon	62	360	189	171	50

Majhinagar	22	143	81	62	40
Halalpur	1	12	6	6	30
Borband	14	88	50	38	40
Karbala	11	88	45	43	30
Ramnagar colony	1	10	6	4	30
Rajgarh	81	332	163	159	50
Son basin					
Govindgarh	7	56	26	25	50
Deolond	50	400	230	370	60
Ken basin					
Mandla	9	81	46	35	40
Bariyarpur	11	90	50	40	50
Salaiya village	6	48	28	20	35
Tedi dhar	7	57	26	21	40
Singora	11	105	55	50	50

Figure 72. Yearly income percentage by fishing in different river basin of M.P.

S.No	Species	Very low	Low	Middle	High
1	Amblypharyngodon mola	*			
2	Cenopharyngodon idella		*		
3	Barilius bandelisis	*			
4	Barilius barila	*			
5	Catla catla				*
6	Chela laubuca	*			
7	Esomus danricus	*			
8	Cirrhinus mrigala				*
9	Cyprinus carpio			*	
10	Crossocheilus latius	*			
11	Danio davario	*			
12	Garra gotyla		*		
13	Garra lamta		*		
14	Hypopthalimenthys molitrix			*	
15	Labeo bata		*		
16	Labeo boga		*		
17	Labeo calbasu			*	
18	Labeo dyocheilus		*		
19	Labeo fimbriatus			*	
20	Labeo gonius		*		
21	Labeo rohita				*
22	Labeo dero		*		
23	Labeo angra		*		
24	Labeo pangusia		*		
25	Labeo boggut		*		
26	Labeo dussuniere		*		
27	Puntius conchonius	*			
28	Puntius phutunio	*			
29	Puntius dorsalis	*			
30	Puntius sarana		*		
31	Puntius sophore		*		
32	Puntius ticto	*			
33	Puntius amphibius	*			
34	Puntius chrysopoma	*			
35	Puntius ambasis	*			
36	Puntius chola	*			
37	Puntius titius	*			
38	Osteobrama cotio		*		
39	Osteobrama vigorsii	*			
40	Oxygaster bacaila		*		
41	Oxygaster gora		*		
42	Oxygaster clupeoides	*			

Table 75. Commercial status of fishes in different river basin of M.P.

43	Rasbora daniconius		*		
44	Rasbora elanga	*			
45	<i>Tor tor</i>				*
46	Lepidocephalichthys guntea	*			
47	Nemacheilus botia	*			
48	Nemacheilus duyi	*			
49	Nemacheilus evezardi	*			
50	Clupisoma garua			*	
51	Eutropiichthys vacha			*	
52	Silondia silondia			*	
53	Glossogobius giuris	*			
54	Heteropneustes fossilis			*	
55	Gonialosa manmina		*		
56	Gudusia chapra		*		
57	Mastacembelus armatus				*
58	Mastacembelus pancalus		*		
59	Clarius batrachus				*
60	Channa gachua		*		
61	Channa marulius				*
62	Channa punctatus		*		
63	Channa striatus		*		
64	Chanda nama	*			
65	Chanda ranga	*			
66	Chanda baculis	*			
67	Mystus aor				*
68	Mystus bleekeri		*		
69	Mystus cavasius		*		
70	Mystus seenghala				*
71	Mystus tengra		*		
72	Rita rita				*
73	Notopterus chitala				*
74	Notopterus notopterus				*
75	Ompok bimaculatus			*	
76	Ompok pabda			*	
77	Wallago attu				*
78	Nandus nandus	*			
79	Xenentodon cancila		*		
80	Rhinomugil corsula		*		
81	Colisa fasciatus	*			
82	Anabas testudineus		*		
83	Badis badis		*		
84	Tilapia mossambica		*		
85	Bagarius bagarius			*	
86	Parapsilorhynchus tentaculatus	*			
		30	32	11	13

Figure 73. Commercial Status of fishes in different river basin of M.P

16. Developing digital database of fish biodiversity

Digitization of Data base of Fishes of MP is already in progress in the Department of Limnology in association of Bioinformatics Center of the University. We have so far digitized data-base of more than 139 fish species available in different river systems of M.P.

The available information on the selected study sites will be stored in different fields of MS Access 2000 in the back end and Visual Basic will be used as Front end of the data-base. This database will be user friendly and selecting a query can retrieve data.

16.1. Window showing the data base

				and have a set			>>
			Debug	~ 200		• 60 ET ES 75 MA	-
	\$\$\$ ■ \$1		- * 4	- * 🖻 *		- [*] Σ	*
1 = 5 20 03	2 4	~	- 1		· = ·	📰 🍟 🕪 💸 Build Style 🗔 🏟	-
	-	-	IB .		s ====		
Solutio 7 ×	Fields 7 ×	Start Page NARMA	DA BIVEB.rdl [Desig		d Þ ×	Server Explorer 7	\times
	sandeep 👻	Data 183 Lave	ut Provious			T C 24 24	
Solution 'u9'	Genus Nam					🖃 🥩 Data Connections	-
😑 - 🛅 u9	Species_name		JI 07 2			BACKUP-SERVER.Computer in	ve
Shar			NARN	IADA RIVEI	2 🗎	BACKUP-SERVER.FISH BIODIN	/EF
		Genus Name	Species name			BACKUP-SERVER.FISH.dbo2	
🖬 🖬		Notopterus	notopterus			BACKUP-SERVER.Fungi.dbo	
		Notopterus	chitala			E Servers	
		Hilsa	ilisha			😥 🖾 backup-server	
		Gonialosa	manmina				
		Chela	laubuca				
		Oxygaster	Clupeoides				
		Oxygaster	bacilya				
		Oxygaster	gora				
		Barilius	barila				
		Barilius	bendelisis var chendra				
		Barilius	evezardi				
		Barilius	radiolatus				
		Barilius	vagra				
		Danio	(Danio) aequipninnatus				
		Danio	(Danio)		-1		
•	▲ ▶ ▶ ↓	4			•		-

🙀 Start 🗍 🥔 🖄 😭 🗍 😋 VBPROJECT2 🔰 🙄 Biotech Students ... 🕞 BARKATULLAH U... 🎼 GENERAL DISTRIBUTION OF FISHES

KATULLAH UNIVERSITY , BHO le × BARKATULLAHUS TVERSIT WELCOME LOGOUT Dr. Vipin

17.Action Plan of Aquatic Biodiversity conservation

Legal and Institutional Framework for Conservation and Management of Aquatic Biodiversity

A sound Action Plan for Conservation and Management of Biodiversity should address the following three aspects:

- Global Issues
- National State Policies
- Local Concern

Since the study conducted during the project period was based on the guiding principles of CBD, it addresses the global concern.

As far as National Policies are concerned the following National/State policies were taken into consideration and the functional part of the action plan addresses issues mentioned in National/State Policies. This ensures

- Interphase of the academia with implementing agencies
- Institutional framework for better implementation
- Financial arrangement from government agencies

Following are the highlights of some of the National, State policies which became basis of this plan.

National Biodiversity Action Plan (2008)

This action plan was released by the MoEF in 2008 and it highlights some of the action points for Biodiversity Conservation.

There are 11 Action Points mentioned in NBAP (2008). Each Action Points has some activities to implement. This action point suggests networking and coordinating agencies. It also suggests timeframe for each activity based on its priority. In order to simplify the action points a matrix has been prepared in the document.

We tried to incorporate these points while preparing the action plan for conservation of fish biodiversity.

Biodiversity Act 2002 & Rules 2004

The Biological Diversity Act, 2002 (No.18 of 2003) was notified by the Govt. of India on 5th February 2003.The Act extends the whole of India and reaffirms the sovereign rights of the country on its biological resources. Subsequently the Govt. of India published Biological Diversity Rules, 2004(15April, 2004).

Following are the highlights of these instruments

- This Act focuses on Biodiversity exclusively
- Since India is a signatory party of CBD, it ensures obligation of the country an signatory and follows principles of CBD
- It ensures involvement of the community (which perhaps any other related Act does not) as the section 22 of the rules states that "Every local body shall constitute a Biodiversity Managing Committee (BMC) within its area of jurisdiction.
- This ensures 3 tier institutional framework upto gross root level.
- It has scope of networking of Civil society, Community, Govt Agencies and Scientific institutions.

Conservation Assessment of Freshwater Fishes 2006

CAFF is an effort to assess conservation status of freshwater species initiated by National Bureau of Fish Genetic Resources Lucknow, an institute of ICAR.

CAFF (2006) has produced a list of species indicating their conservation status following a methodology prescribed by IUCN. It also suggests some action points which have been taken into consideration while preparation of Action Plan under this project.

MP Fisheries Rules

Certain sections of MP Fisheries Rules have provision of declaration of "No Fishing Zones" in rivers and lakes. This is also an important measure for *In-Situ* conservation of fish bio-diversity. Following are the highlights of MP Fisheries Rules:-

In-Situ conservation

MP Fisheries Rules, 1971, have provisions of "No Fishing Areas" in some riverine stretches. Two notifications have been issued in this regard declaring... "No Fishing Areas". First notification was issued in 1973 declaring...areas. Some of these areas are now in Chattisgarh state. Another notification was issued in 2001 declaring 16 deep pools of Narmada as no fishing areas.

These legal instruments have not been proved to be effective due to the following reasons:-

- The rules have provision of declaring no fishing areas but they lack effective monitoring and management system in the implementing species.
- Fisheries Department of the Govt. of MP is the implementing agency under these rules but due to lack of trained and sensitized man-power., implementation of these legal instruments is difficult. Moreover, the department has its main focus on development of aquaculture activities; conservation efforts do not get priority in the action plan of the department.
- The rules lack provision of community participation in conservation efforts. In recent years, there has been growing awareness regarding community participation like JFM and BMC. The rules need amendments tom ensure provision of community participation. This initiative will help in monitoring of the reserve area.
- Declaration of "No Fishing Area" and no fishing period certainly affect livelihood of the fisherman community depending on these resources. There is no provision of compensatory incentives of PES. Recently, the concept of PES has been identified as a tool to involve community in conservation and this needs to be explored in Aquatic Ecosystem also.

Habitat Restoration

Habitat Restoration is also an approach for *In-situ* conservation. Habitat destruction has been identified as one of the main reason folosss of biodiversity.

Conservation Action Plan

<u>In situ –</u> Habitat Restoration :-

According to NBAP (2007) augmentation of Natural Resources Base is one of the most important action points for in- situ conservation of bio-diversity. Under this action points some of the action points are directly related with restoration of aquatic habitats.

River Basin Management and Catchment area Treatment is an important action point which will have direct impact on the stream/river ecosystem. Soil erosion and siltation will be checked with catchment area treatment and qualitative augmentation of water in the river will also be ensured.

Afforestation in Head water stream:-

According to River Continuum Concept, head water streams are mainly dependent on riparian vegetation for its organic matter input. This organic matter from allochthonus source is utilized by the benthic organisms which help in mineralization and availability of nutrients and food for fishes. Hill stream forum of fishes solely dependent on these sources. Therefore, afforestation in headwater areas is an important action point.

Restoration of Riparian Vegetation (50m) :-

Riparian zone plays an important role in River Ecology and its biota distribution. Riparian zones with vegetation coer provide habitats of many aquatic and amphibian organisms.

In recent years riparian zones of large and small rivers have suffered the brunt of urbanization and development. Restoration of buffer ship of at least 50 meters on both the side of the river is an important action point in this context.

National Forest Commission (2006) also suggest recommends quantitative and qualitative augmentation of water by afforestation in catchment.(No. 47 (6.16)).

According to a circular of Forest Deptt. . Some rivers have been identified where tree felling have been banned up to 2 km at both the banks. (No. 3033/ 1859/10/2/82 dated

01/09/1982). This is a major action point in creating green buffer zone along the river stretch.

Habitat Restoration Acton Plan (Pilot Scale)

We propose to start some Pilot Scale Plans for restoration of habitats.

Following are some of the points:-

In Central stretch of Narmada Gadaria Nala, Kaliadeh and Bhagner nala can be taken up for pilot scale habitat mapping and restoration. These three streams have significance in ecology of Narmada as these streams originate from hilly area of Budhani forests and join the main river from northern side. The stretch where these streams join the mani river is kown breeding grounds of Mahseer and other fishes.

In these areas, all the three action points like conservation of head water streams, catchment treatment and development of riparian buffer strip along the main course of river can be implemented simultaneously. This can be taken-up under JFM.

In addition to this, other rivers can also be identified for this purpose. In Chambal river, origin of the stream near Janapao and in Betwa origin of the stream near Jhiri can also be taken-up at Pilot Scale.

At least one working plan of forest can be taken-up on Pilot Scale including stream catchment restoration and habitat restoration.

Deep Pools :- Pilot Scale Action Points

Deep pools play an important role in river ecology as they serve as refugia for fishes during lean period. Brooders get refugee in deep pools and migrate to breeding grounds when river is on spate.

We propose, a Pilot Scale, Budhani Ghat deep pool can be taken up for the following action activities.

- ▶ Formation of Biodiversity Management Communities/SHGs along the deep pool.
- Resource mapping in the selected area to identify appropriate breeding sites for fishes wit the help of BMC/SHGs.
- Installation of Cage in the deep pool/ and stocking with IMC can be helpful in providing alternative source of income.
- > Regulation of fishing by BMC/SHGs members.
- \triangleright

Ex-situ Conservation : Pilot Action Points

According to NBAP (2007) two main action points are suggested which are relevant in the present context.

- Consolidate, augment and strengthen network of zoos, aquaria etc.
- ✤ Technical and financial support for Captive breeding of endangered species.

*

Captive Breeding of Endangered Species

We propose to start captive breeding of endangered fishes like *Mahseer* and *Chitala* in the state. There are hatcheries of Govt. of MP and private farmers which can be utilized to breed these fishes and ranch the rivers and reservoirs with juveniles for further propagation.

National Bureau of Fish Genetic Resources can play a vital role in this direction as they have developed technology for propagation of these fishes.

Live Gene Banking and Cryo-preservation of Genetic Material :

This can also be very helpful in preserving gene pool of endangered species. NBFGR can be a nodal agency for this task.

Scales of Conservation Strategies

There has been a lot of debate on the scale of conservation strategies. A school of thoughts suggest that there should be a larger land-scape for conservation whereas others suggest considering ecosystem and flagship species to initiate conservation efforts.

However, Denny (1995) has suggested a hybrid approach incorporating all the scale. He suggests that there should be a flagship landscape harboring a mosaic of ecosystems and a flagship species can be identified to focus conservation efforts around it. Focusing on flagship species will result in consideration of its habitat which will indirectly improve the ecosystem health in the landscape.

Central Narmada Landscape

In order to adopt this strategy in Madhya Pradesh we tried to identify a suitable landscape and found Central Narmada landscape as the most suitable landscape for this purpose on the following grounds:-

An ideal land scape for this purpose should have the following elements

- It should have some socio-cultural significance
- It should have mosaics of ecosystems
- It should have a flagship species endemic to this system and needs some conservation efforts.

Socio-cultural Significance

Narmada is one of the holy rivers in India and about 88% of its total stretch falls in M.P. It has a great cultural influence on the Central and Western part of the state. It has many pilgrim places on its banks. "Narmada Parikrama" a pilgrim expedition devotee prefer to perform on foot from its origin in Amarkantak to its end when it meets to Arabian Sea. This makes it a unique river which is connected to socio-cultural life of the community, residing in its catchment area and even below it.

For the purpose of conservation efforts, central part of the basin can be an ideal site. This falls between downstream of Bargi to upstream of Indira Sagar. This landscape has a mixed type of land use including dense forests on one land and intensive agriculture and large urban agglomerates on the other. It harbors some important land based Protected area like Pachmarhi Biosphere Reserve and Barna Singhori Sanctuary and some part of Ratapani Tiger Reserve. There are several "No Fishing Zones" declared under fisheries Rules and some sacred Ghats fall in this stretch where fishing is prohibited due to the religious reason.

Have this flagship land scape can be considered for this purpose.

<u>Mosaic of Ecosystems</u>

An ideal land scape should have a mosaic of ecosystems. The central Narmada landscape has a mosaic of ecosystems. In addition to about 500 km of main river stretch, it harbors hill stream of high gradient like Denwa and its sub-tributaries, reservoirs like Tawa, Barna and Kolar, tributaries like Barna, Kolar and Tawa, unregulated rivers like Dudhi, Ganjal and Sip. Some part of these rivers/streams form wetlands which give support to wintering wetland birds also particular the back waters of reservoirs.

River	Reservoir/Wetlands	Wetlands
Dudhi	Kolar	Back waters of Reservoirs
Ganjal	Barna	
Seep	Tawa, Indira Sagar	

Mosaics of Ecosystem in Central Narmada Basin

Mahseer: A flagship Species

Narmada River was once known for its Mahseer fisheries. Three species of Mahseer, *Tor tor, Tor putitora, and Tor khudree* were recorded in the river, however, *Tor tor* was the dominant one. About 20-255 of the total catch was contributed by Mahseer species. There are 6 seed collection sites around Hoshangabad which wee known for collection of wild seed of Mahseer. But in recent years these sites have lost their importance as the population of Mahseer has declined significantly at an alarming rate.

This needs due attention and consideration while preparing any action plan for fish diversity conservation.

Mahseer qualifies all the aspects to be considered as flagship species namely:-

- It is a majestic sport fish and known for sport fishery
- It prefers well-oxygenated water with moderate flow and pebble river bed to breed which contribute Pristine Stream conditions.
- It has taste value also

It is clear from the above discussion that the Central Narmada can be an ideal landscape for conservation due to its socio-cultural importance. Mosaics of ecosystems and harboring a flagship species like Mahseer.